Heavy Photon Search Electronics, DAQ, & Software

Gunther Haller SLAC PPA REG-E January 7, 2010

Block Diagram

Items

- Control and Timing system
 - Same blades as used for DAQ
- * Software
 - Configuration (Front-end ASICs)
 - Calibration * Analysis
 - L1 trigger configuration (possibly just enable map for front-end OR in CAL)
 - L3 filter to reduce data amount
 - Online event -- data quallity monitoring
 - User Interface, GUI for above
- * Power supply and distribution
 - Distribution/monitoring via FPGA board
 - Use bench supplies for power
- Minimal T/V/I monitoring (tbd)

Processing versus Storage

- * Number of channels
 - 500 x 128-ch ASICs = 64,000 channels
 - Occupancy: 3% -> 2,000 channels
- * Amount of data for 40 MHz clock, 50 KHz rate
 - APV25
 - Each chip 12-bit header plus n bits/channel
 - 7 bits for channel encoding
 - N depends on ADC used
 - If 8 bit ADC then total of 2 bytes/channel hit
 - For each ASIC need additional 9 bit address
 - Total is about 4 bytes/chip overhead plus 2 bytes/channel hit
 - 2,000 channels -> 4 Kbytes, ~times two overhead -> 8 Kbytes
 - 8 kbytes at 50 KHz -> 400 Mbytes/sec
 - For 1 month running: 30x24x3600x400 Mbytes/s -> 400 Tera bytes
 - ABCD3T
 - Less than above but not even factor of 2, so choice of ASIC is not driven by DAQ/storage
- * Cost
 - \$500 / Terabyte
 - Store all (no L3) is \$200,000
 - Data rate into storage is 150 MB/sec per node (scales with nodes)
 - if one allocates \$20k for storage, that is 40 Terabytes, need 10:1 reduction in L3 processing
 - Increase of reduction from 10 to factor of 100 saves max \$20k

More items

- * CAL Dynamic Range?
 - If range from 1 to 6 GeV and want 1GeV to 5% -> only 8 bit required?
- * Trigger only from CAL?
 - Or maybe add scintillator plates, small, maybe 4 to 12
- * How is beam info transported?
 - Analog, digital, protocol?
- * Boards do be designed
 - Strip-ASIC hybrid
 - FPGA board with ADC and power distribution (simple)
 - Trigger board (probably can use same FPGA board)
 - CAL board

