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!. Introduction 

With the construction of storage rings a new era of experimental high energy physics had begun. In the 
CERN intersecting storage rings center-of-mass energies have been reached which have not been obtaina- 
ble by fixed-target experiments so far. At these high energies particle multiplicities are high and detectors 
are complex. 

At the same time, progress in electronics allowed the acquisition of events at high rates, and 
high-resolution detectors have been built which achieve the precision necessary to measure the momentum 
of energetic particles. 

The analysis of the data requires that the reconstruction algorithms must be of a precision at least 
equivalent to that of the measurements, and must be sufficiently fast to be able to deal with the amount of 
collected data. Furthermore, they must be flexible so that the reconstruction program is able to deal with 
any required combination of individual detector modules, but they must still be of a simple architecture. 
Therefore, to make the mathematical algorithms fully efficient, they must be conceived in close connection 
with the design of the hardware components.  

For the purpose of this paper it is assumed that the problem of associating the many hundreds and often 
ambiguous coordinates to particle track candidates has already been solved. Then it turns out that the 
requirements of track fitting, i.e. estimation of track parameters, are met best by the least-squares estimate, 
being rather fast, flexible and relatively robust. If this method is to be optimal, the weight matrix must vary 
sufficiently smoothly as a function of the track parameters in the neighbourhood of an individual track's 
path, and its covariant (off-diagonal) terms must be well understood. 

The first condition is well fulfilled for multiwire proportional chambers, but must be carefully checked 
for novel-type detectors like drift tubes working in the streamer mode. The second condition is rather easily 
fulfilled as far as multiple scattering is concerned, but might be more complicated in case of a dense stack 
of wire or microstrip detectors. If, in addition, the track model can be approximated sufficiently well by a 
linear model in the neighbourhood of the measurements belonging to an individual track, the least-squares 
estimator has minimum variance among all linear estimators. Asymptotically, or in case of Gaussian 
measurement errors, this estimator is also efficient. The linear properties of the least-squares method and 
the equivalence of its mean quadratic properties with those of a Gaussian process make this method also 
well adapted for error propagation and therefore for a subsequent fit of a vertex or a kinematical 
hypothesis, and also for a chi-square test. 

In practice, it turns out that a tree-like hierarchical strategy is the best one to assemble coordinates or 
track elements from many particles to a common vertex. Therefore sect. 2 will discuss different attempts to 
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assemble individual track elements to complete tracks in the context of a complex detector with possibly 
radically different modules. It should clarify the precise meaning, advantages and disadvantages of all 
methods discussed. Sect. 3 will describe a novel algorithm to evaluate the common vertex in the presence of 
high track multiplicities. Its main advantage is the fact that the number of required arithmetic operations is 
proportional to n (number of tracks) if only the estimate and the X 2 are computed, and proportional to n z 
if the covariance matrix of the estimate is computed as well. 

The guiding line for this report was a case study (the LEP experiment DELPHI  at CERN), but all 
methods discussed are of general use and can be applied without any restriction to any similar experiment. 

2. Track e lement  merging strategy 

2.1. Generalities 

The path of a charged particle in a magnetic field is given by the solution of a differential equation. 
Neglecting energy loss and the effect of an electric field, the absolute value of the momentum, I PI-  
remains unchanged in vacuum, and is a constant of motion [1,2]. In this case the equation of motion can bc 
written in the simple form: 

d2r/ds2 = ( q/I P l ) ( d r / d s  x B( r) ), ( la )  

where 
r is the Cartesian coordinate vector (x, y, z), 
s is the path length, with d s  2 = d x  2 + d y  2 + d z  2, 

q is a constant proportional to the charge [1 ], 
B is the magnetic induction. 

In the presence of matter along the particle's path, eq. ( la)  has to be modified: 

d2r/ds 2 = ( q/I P l ) (d r /d s  x n ( r ) )  + ~(s  ), ( lb )  

where # ( s )  is a "white  noise"-like stochastic process which describes multiple scattering. [PI  is no longer 
a constant, but a falling function of s: 

t e ( s ) l =  IP(0)  l . w ( s ) ,  

w ( s ) = l ,  for s = 0 ,  

w( s2 ) <~ w( s, ), for s2 > s 1. 

Unlike ~(s) ,  w(s) can be considered as a deterministic function. 
Frequently it is convenient to choose one of the coordinates, e.g. z, as the independent variable instead 

of s. The preferred choice is the axis perpendicular to the detector surfaces. 
The position of the undisturbed track at a certain value of z is then a function of z and of the set of 

initial conditions PR at a reference plane z = ZR: 

X ( z ) = f , ( z ,  PR)' y ( z ) = f ~ ( z ,  PR)" (2a) 

PR is a five-dimensional vector: 

p l  = (XR, mR, (dx/dZ)R,  (dy /dz )R ,  1/1PR 1)" (2b) 

If one takes into account multiple scattering, the solution of the equation of motion can be written as 

x ( z ) = f , . ( z ,  Pa)+'. ' :"(z) ,  .v(z)=f , . (z ,  P R ) + ' " ' ~ ( Z ) ,  (3a) 

provided that B is sufficiently homogeneous over a range covered by the ensemble of scattered tracks with 
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Fig. I. Deviation of the actual (scattered) track from an ideal (unscattered) track at a detector plane at z = z[). 

m~ and c m~ describe the particle's deviation from the the same initial conditions. The random processes ¢, , 
unscattered track (fig. 1). 

By introducing 

dx  d L  d¢7  ~ d y = d L ,  d ' ,  ~'~ (3b) 
dz  d ~  + d ~ '  dz  dz  + d---~ 

and 

1 / I  P.-I = ]/(IPR I .w'(z)),  

one can define a vector p= similar to PR (see eq. (2b)), which describes the track behaviour at any value of  
z. Note  that z R is not necessarily the physical starting point  of  the particle's path. which may also extend to 
z < z R. It is, however, essential to understand that %m~, %"~ and their derivatives are set to 0 at z = z R by 
definition, and that, in general, different solutions of  the equation of  mot ion will be selected for different 
choices of z R (fig. 2). 

Assuming absence of  multiple scattering, the parameter  vector p: is a deterministic function of  PR: 

P= = P ( P R ;  z) .  (4a) 

The function p is called the track model. For  small variations ApR of the reference parameters PR one can 
write: 

(4b) 

where Op,/apR propagates  a change in the parameters at z = z R to the point z. More generally, one can 

s o l u t i o n  f ( ~ .  z , . t z ,  ) / "  / - 

. . . .  k /  real path with mutt scott ScQr re r lng  ~ f / -  ~ 1= • • 

I f sotutnon f(p-';z.:z,I 
) 

~'(Z~Zo) j / / 
i " /  

J 
/ 

Fig. 2. Track with discrete multiple scattering; for different choices of "R different solutions of the equation of motion are selected. 
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propagate a variation of the parameters at z = z, to z = ,z~ by means of the formula [3-5]: 

3P:, = OP~ ~P.-,-~PR(-~P~) (4c, 

In practice, the track model p and the "differential propagator" "dp.,/'dp. can be obtained either 
- by an explicit solution of eq. (la); 
- or by numerical integration of a reference track and five auxiliary tracks, each of them varying one of 
the five reference parameters, i.e. numerical differentiation with respect to the reference parameters: 

or by other approximation methods [6-8]. 
In general, a suitable choice of track parameters can be made such that small variations around the 

reference track are well described by a linear track model. If, however, large deviations from the reference 
track occur during the fitting procedure, it is more convenient to compute a new reference track, instead of 
computing eq. (4b) up to second order. If an explicit solution of eq. ( la)  is known, the construction of a 
linear track model is in principle unnecessary, but may simplify the least-squares estimation (global 
method). 

If multiple scattering becomes important, and if B or the material traversed by the particle is rather 
inhomogeneous, the ansatz (3a) and the linear approximation as indicated in eq. (4b) may turn out to be 
inadequate. In this case, a composite model offers a way out [6]: In order to allow the model to stay close 
to the physical path of the scattered particle, break points are added to the track model, e.g. at the beam 
tube, at thick detectors or walls of vacuum vessels, or at abritrary points inside massive obstacles. The track 
model is no longer a function of only five parameters, but two parameters (scattering angles) per break 
point have to be added. These additional parameters correspond to direct measurements of the scattering 
angles at certain points each with datum 0 and with an error given by the theory [9-11]. 

The third method described in this section, the progressive method, makes use of the properties of both 
the global and the break point method [12,13]. First a partial track segment is fitted by the global method, 
the reference plane being between this segment and the rest of the track. After reversing the track direction 
at the reference plane, a local track model is calculated by using a track propagator similar to eq. (4c), 
extending as far as the next detector surface which is then taken as the new reference plane. In this way, 
detector after detector is added. Each detector can either supply simple coordinates, or more elaborate 
information such as track position and direction summarizing the output of a whole detector module (fig. 
3). 

Fig. 3. Intermediate status of track fitting in a complex but m~nlular detector. 
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2.2. The global method 

According to the Gauss-Markov theorem, for a linear model the least-squares estimator has the smallest 
variance among all unbiased linear estimators, provided that the weight matrix used to compute the X 2 is 
the inverse of the covariance matrix of the measurement errors. (Unbiased measurements and a nonsingular 
covariance matrix are assumed.) 

With eq. (3a) and using the linear term of eq. (4b), the following least-squares ansatz can be formulated: 

~ ( p R ) =  ( l (po)  + A . ( p R - - p o ) - - m ) r "  V- '  "( l (  p,,) + A ' ( p R  - -Po)-- , , ) ,  (5a) 

with: 
m = (m,), vector of measurements, 
/ =  (f,), vector of functions corresponding to m, 
V, the covariance matrix of m, 
P0, the approximate initial value of the track at z = z R, 
A = Of/Op e at the point P0- 

The solution of the least-squares problem is then given by: 

PR =P0 + ( ATV- 'A) - 'ArV-  ]( m - / ' (P0 ) ) -  (5b) 

The covariance matrix V is the sum of two independent contributions: 

(V)t./  = ~,y~:a( I[det " • det } " b e {  firms " •?s } , (6) 

where ~,det is the intrinsic measurement error of the detecting device, i.e. the difference between the impact 
of the actual track and the measurement, whereas c, m~ is the deviation of the actual (scattered) track from 
the ideal (unscattered) track with the initial values P0. ~f denotes an expectation value. 

For the evaluation of the matrix V it is convenient to distinguish between discrete scatterers (DS), where 
all material is concentrated into a single surface, and continuous media (CM). Then ~,~ can be 
approximated by: 

with: 
O~(s), O2(s ), two independent scattering angles, 
O,. k = Oi(s ~ ), the scattering angle at DS k, 
~,(s) = dOi(s)/ds, 
s, the path length along the track. 

The sum extends over all DS with s~ < s,, the integral extends over all CM with s < s,. 
Using eq. (7a) one can compute 

( 3f, 3fj o~{O 2 3f, Of., o¢{82 ) 
]¢ . . . . . .  

j( ) 8f, af~ d~{v~(s)}_~ o~{v~(s)} ds, (7b) 
+ aO,(s) ao,(s) aO2(s) aO (s) 

with ~{ v~2(s)} the variance of multiple scattering angle per unit length. 
In the derivation of eq. (7b) the independence of scattering angles at different points was used, i.e.: 

e{ v~(s,)v~(s2)}ds,ds 2 = e (  02(s,)} 3(s 2 -  s , )ds ,ds  2. (7c) 
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Fig. 4. The global method. Additional information in subsequent program steps is always used (o improve the estimate of the same 
quantity, namely PR (see also subsect. 2.4). 

For efficient algorithms to evaluate eq. (7b), also including energy loss, see refs. [5,6]. Note that the term 
~'{ c,"1~.~i"~ } must be evaluated for at most two independent coordinates per detector plane; additional 
coordinates can be handled by error propagation. 

Due to the influence of multiple scattering, the actual track may stray quite far from the ideal, 
unscattered track. It should be stressed that the goal of the global method is a good estimation of the track 
parameters at the point where the particle crosses the reference plane. This is also important for error 
propagation and for comparison with the two other methods discussed below. 

When information from additional detectors is added, the fitted value p~  (eq. (5b)) is in general 
correlated to the coordinates obtained from this additional detector. Using eq. (5b) one obtains: 

cov(pR,  mi"oa ' )=( ,&iV 'A)-"A'V '.cov(m,m'~'lJ'), (7d) 

and cov(rn , rn~,~ ''L'l)) is calculated with eq. (7b); the prime denotes the index of additional coordinates. 
Some advantages of this method are: 

- transparent X 2 ansatz; 
-- the asymptotic properties of the estimate are known; 
- efficient algorithms are available; 
.... good starting point for a vertex fit; 

initialization is not critical; 
-- information from other detectors which may be added in subsequent program steps is always used to 
improve the estimate of the same quantity, namely p~ (fig. 4); 
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- after elimination of an outlying coordinate k. the inversion of the reduced covariance matrix can be 
avoided by updating the reduced weight matrix according to the following formula: 

(v ');,= z, , , -  
Some drawbacks are: 

- The fitted track is an "extrapolated ideal track" and can be quite far from the physical track. 
- The pull quantities (differences between measured and estimated impact on a detector) can be 
dominated by multiple scattering and therefore bear little information about the detector behaviour. This 
fact can also impede the judgement of possible outliers. 
- A matrix of the dimension of the coordinate vector must be inverted. However, an important gain in 
computing time can be achieved if it is possible to split the covariance matrix into two independent 
projections. This is often the case for tracks with high momenta.  

2.3. The break point method 

This method is an attempt to follow the path of the scattered particle more closely. When the particle 
crosses a layer of material, two independent scattering angles are introduced which are considered as a 
direct measurement with datum 0 and an rms which is given by the Moli6re formula [14]. The actual values 
of the scattering angles are introduced into the fit as parameters to be estimated along with the standard 
track parameters. 

If there are m breakpoints, the track model leads to functions of 5 + 2m parameters, in analogy to eq. 
(3a): 

m = ] ' ( p g ,  19) + ¢ Jet, (8) 

with: 
19 = (Ol.~, @2.~ . . . . .  191 ..... @2.,,,), scattering angles, c d~' intrinsic measurement errors of the detectors. 

The least-squares ansatz is now a sum of two terms, the first dealing with the detector errors and the 
second with the scattering at the break points (see also eq. (5a)): 

"~(PR' 19)='All +"4'[2, 

o)= ( /(pg, 19)-m)'V-l( 19)-m). 
~t'2( PR, 19) = 0 + s -  119, 

(9a) 

(9b) 

(9c) 

with V the covariance matrix of detector errors (usually diagonal) and S the covariance matrix of scattering 
angles (diagonal). 

Again, a linear expansion around an approximate initial value Po is performed: 

I ( P R ,  O) = / ( P 0 ,  0) + A . ( p ~  - P 0 )  + F . O .  (10) 

with: 

A = 0 ] ' / 0 p a  I r . - p . . o = 0 ,  F = O / / O O l p ~ = p , , . o _ . .  

F can be computed as described in refs. [5,6]. Using eq. (10), eqs. (9) can be rewritten: 

JZ= ( /o + A" Ap  + F ' O - m ) r V -  ~( fo + A" Ap  + F ' O -  m)  + O r S - I O ,  ( l l a )  

with f0 =] ' (P0 ,  0) and Ap = P R  - P ~ -  
Differentiation of .At' with respect to 19 gives: 

F T v - l (  f~, + A.  A p -  m ) +  ( F T V - ' F  + S I)19 = O, 

or, setting X = F r V  IF + $ - I :  

1 9 = - X - I F r V  '(Jo+A'Ap-m). ( l l b )  
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o r  

with 

Substitution of eq. (11b) into eq. (1 la) leads to: 

../¢'=(L+A.Ap-m-FX-'F'V ' ( f , ,+A-Ap-m) ) " .V  ' 

- ( f o + A - A p - m - F X  ' F " V - ] ( / , + A . A p - m ) )  

+ ( / , + A . A p - m ) r V  ~FX-tS-tXJFwV J(~,+A.Ap-m). 

, # =  ( [ ,  + A - / . l p -  m ) ' .  W . (  ~, + A - A p -  m),  (12) 

W = ( I - F X - ' F ' V ' ) ' V  = ( I - F X - ~ F " V - ' ) + V  'FX 

and I the identity matrix. 
The weight matrix W may be reduced further: 

with 

tS IX - lFwV 

W=V 1-2V-IFX IFrV ]+V IFX IFIV-1FX 1FIV-I+V IFX 
= V - t _ 2 V - - I F X  IFI V I+V 1FX I(FIV.IF+ s 1)X--IFW V i 

= V  -1 - V  IFX 1 F T v  t 

I s I x 1FwV..] 

(13) 

X = S  J + F T V ~ F .  

Eq. (12) is just the X 2 ansatz obtained by the global method (5a), since the covariance matrix computed 
in eqs. (6) and (7b) can be expressed as 7 + FSF r in the notation of this section. In fact, W is the inverse of 
V + FSFI: 

(V 1 -V- IFX-1F IV- I ) . (V+FSF] )= I -V  IFX 1FW+V IFSFr-V-IFX-~FIV IFSF1 

= I + V  ~FSFT-V ~FX ]( I+FtV ~FS)Ft=I+V ~FSFT-V ~FX~(S-~+F~V JF)SF[=I. 
q.e.d. 

It follows that the global method and the break point method are equivalent as far as the estimate of the 
initial parameter p ~ is concerned. 

The amount of computation, however, is different for the two methods. If there are n coordinates and m 
break points, the calculation of W according to eq. (13) needs about 4m 3 + 8m2n + 2n2m operations (1 
operation = 1 multiplication + 1 addition), whereas the calculation of W as the inverse of V + FSF 1 needs 
about n~/2 + 2n2m operations. Therefore, the global method is more efficient than the break point 
method as soon as there are more than about n / 4  break points. It does not give, however, the close 
approximation of the particle's path everywhere along the track that can be achieved by the break point 
method. As a consequence, the break point method also allows a better judgement of outliers, and is 
especially adequate for track models like spline-interpolation [8]. 

A disadvantage of the break point method is the fact that continuous scatterers have to be approximated 
by layers of material. This might drastically increase the number of break points in a dense material. 

2.4. Track element merging by weighted means 

In a complex detector it is often necessary that track segments are first fitted separately. The problem of 
combining the information is discussed in this section. It shall be assumed that there are two detector 
modules with two estimates p, of the track parameters at the respective reference planes z = :R .  i = 1. 2 
(see fig. 5). The covariance matrices of the p, are designated by C, (i = 1, 2). The reference plane of the 
combined track information is assumed to be equal to z = zR  ,. 



Module I 

P. Btlloir et al. / Track element merging strategy 

Module 2 
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Fig. 5. In track element merging, the track parameters .h I are propagated to a new reference plane. #I 2~ and .o2 are considered as 
direct measurements of the true track parameters at the reference plane. 

The idea is now to propagate  the estimate Pl and its covariance matrix C I to z = z R : 

F12'=p2(pl) 
C'1 = D . C  1 • D r with D = Op2/Opl. (14a) 

Contr ibut ions  of  multiple scattering between ZR, and ZR. (including material at ZR,) are added to C'~, to 
give the final covariance matrix Cl 2~ of  p{21: 

op_, O(p1.3, p,., 

+ contr ibutions of  cont inuous scattering (see eq. 7b) (14b) 

with C(O,)  the covariance matrix of the scattering angles 0,. I, O,. 2, and i the index for all scatterers in the 
interval [ZR,, ZR,)- 

If one considers now p112) and P2 as direct measurements  of P2, one can make a joint least-squares 
ansatz:  

• / / ( ( P 2 )  = ( P 2 - / ~ 2 ) T C ;  1(p2-- / ' i2)  + (P2- /~{2 ' )x(C121)- l (p2- /~1121 ) • (15a) 

The final estimate is a weighted mean: 

P2 = ((Cll -~)) i+  C~ 1)-1((C,12,)- 1p121 + C~. Ip2), <15b) 

and " ~ ( P 2 )  is X 2 distributed with 5 degrees of  freedom. 
The ansatz (15a) contains an implicit assumption, namely that p~2~ and P2 are independent.  This is, 

however, only true if the reference plane ZR_ ' is at the near end of  module 2, as regarded from module 1. In 
this case the combined estimate is between the two modules and therefore not of  great interest, except for a 
X 2 test. In the more interesting case of  ZR: being at the far end of  module 2, one notes first that the 
difference 

p2(p'l) 
(where t denotes the true values of the track parameters) is a random quantity.  It is correlated to the 
contr ibut ion of  multiple scattering to the measurement  errors in module 2 and hence also to 

Therefore, also ( /~ - ' ~ -p~ )  and (P2 - P ~ )  are correlated and their covariance matrix has the form: 

f f { ( P 2 - - P ~ )  (/~12 _ p ~ ) T } =  _ ( A r 2 V f ~ A 2 ) - t A ~ V f l . o , ~ { ¢ , ~ . ( p 2 ( p , i ) _ p , 2 ) T } ,  (16) 
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where c~ "'~ is the contr ibution of multiple scattering in module 2 and A~, V, arc the matrices of formula (5b) 
for module 2. 

The evaluation of  the expectation in eq. (16) can bc quite lengthy, al though a certain amount  of it can be 
donc  during the individual fit in module 2. The problem disappears if there is no multiple scattering in 
module 2. 

2.5. The progressi~'e method 

An elegant way out of  the di lemma described above is the progressive method of track following 
proposed in refs. [12,13]. It can be regarded as a special case of  track element merging, where the second 
clement consists only of a measurement of two independent  coordinates at z = ZR,, e.g. m, , , .  ~, m2, ," ~ (n 
pairs of coordinates are assumed to have been used for track segment 1). In this case the second weight 
matrix has the simple form: 

1/°2r,+1 0 0 0 0 

0 1/o~,,+2 0 0 0 
~ 1 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

and 

p:=(m2,,+,, m:, , .  2, 0, 0, 0 ) ' .  

Since Pz -P~ is just the intrinsic measurement  error of  the detector, there is no correlation between p~2~ 
and P2, and formula (15b) can be applied. This procedure can be continued iteratively by incorporat ing 
measurement  after measurement (fig. 6). It should be noted that only the current last estimate of p 
contains all the information used so far, since the preceding estimates are not updated. Therefore, this 
method should be used in such a way that one starts from the outer detectors and proceeds towards the 
vertex region, until finally all the available information has been used. 

The method is not restricted to measurements  of coordinates but can also be applied to measurements  of 
quantities related only to the momentum (e.g. E, 13 or  m). In this case, only the corresponding element 

(C2)~5 is not equal to O. 

st~n~ 

Stort,ng 

Eiemenf 

Fig. 6. The progressive method. Starting from the outer detectors, the track is followed step by step towards the center. The estimate 
of the actual running track parameter is optimised. 
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During track following it is also of  interest to define a cumulative X2: 

X 2 n , 2  = X2n + X~ ,  ,. (17) 

where X~n is the X 2 resulting from the fit of track segment 1 and has an average value of 2n - 5, while 
Xi .  ~ ns obtained by minimising eq. (15a) and has in this case two degrees of freedom. The average value of 
X~,,~2 is therefore 2 n - 3 .  If the errors are Gaussian,  X~,, and X?.~ are independent  and really 
x2-distributed, and so is then X2" ~2. 

X~+ ~ can be used as a fast check whether a point  belongs to a track; the cumulative X 2 gives a judgement  
of  the overall quality of the track. It might be biased towards smaller values, however, if X~, ~ is used as a 
selection criterion. 

The main advantage of  this method is its efficiency in the case of a large number  of  coordinates and 
non-negligible multiple scattering: 
- The inversion of  a matrix of the dimension of the number  of measurements  is avoided. Only matrices of 
dimension 5 × 5 have to be inverted. 
- The decision on outliers can be taken as one goes along the track. 
- The real track is followed. 
- The linear approximat ion of the track model needs only to be valid over a short range. 
Some drawbacks are: 
- The method is " p e r  se" a mixed method, as an initial track segment has to be fitted by some other 
method. (Two points, however, are enough if the momen tum is given weight 0). 
- To start track following at the outside requires some care to overcome the following problem: Usually no 
dense coordinate strings are available in the outer detectors, and the track must be propagated over large 
interdetector gaps, through thick scatterers, etc. 
- The decision on outliers relies only on the information incorporated so far, which might be rather poor  
at the beginning. 
- The asymptot ic  properties must be checked empirically. 

3. Vertex evaluation 

3.1. Concepts 

A vertex fit serves two purposes. The first is to estimate the position of  the point of  interaction and the 
momen tum vectors of the tracks emerging from this point  (with improved precision due to the vertex 
constraint).  The second is to check the association of tracks to a vertex, i.e. the decision whether the track 
does indeed originate at this vertex. The following discussion is applicable both to the pr imary interaction 
vertex and to an eventual secondary vertex (a decay or  secondary interaction). While in the first case the 
exact position of the vertex might seem a simple mathematical  constraint,  it is of some importance in the 
second case, since it determines the direction of  the (possibly unseen) track connect ing the two vertices. 

In both cases the momentum vectors of all emerging tracks should be computed  with the best possible 
precision together with their covariance matrix, since they are the input to a subsequent kinematical fit. 

The method described below has been proposed and used successfully by the first generation experi- 
ments at the C E R N  intersecting storage rings [4]. Unfortunately,  it involves the inversion of  a matrix of the 
order  3n (n = number  of  tracks). Since the number  of arithmetical operat ions for the inversion increases 
with the third power of  the order, this method becomes prohibitive with a further increase in energy with 
the consequence of  higher multiplicities. Also, the events become more complex with increasing need to 
eliminate tracks which do not belong to the pr imary interaction vertex. 

Therefore, a new algorithm for the computa t ion  of  the estimates, their covariances and the X 2 was 
developed, allowing to apply this method also to very complex events. In order to avoid unnecessary 
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repetitions of  the vertex fit, a recursive method is also proposed,  which allows to check the association of 
tracks to a common  vertex. 

The input to the vertex fit consists of  information about  the tracks to be grouped together. Normal ly  one 
considers the estimated track parameters at a reference surface (see sect. 2) as virtual measurements.  The 
reference surface will in most cases be either a plane, a cylinder (especially in storage ring experiments) or 
the beam tube. 

The choice of the reference surface has a certain influence on the behaviour of the fit. since it is desirable 
that the virtual measurements,  namely the track parameters,  are to a good approximat ion linear functions 
of  the vertex position and of the parameters determining the momentum vector at the vertex. 

In some cases the reference surface will coincide with a physical surface, e.g. the wall of a vacuum vesscl 
or a vertex chamber.  If multiple scattering in this wall is important ,  it can be taken into account  easily, by 
augmenting the covariance matrix of the estimated track parameters (see eq. (14b)). 

If the position of the vertex is known to some precision a priori, as is the case for the interaction region 
of  a storage ring, this knowledge can be considered as an independent measurement  of the position, with its 
proper  error matrix. 

If a single track is poorly defined, its coordinates should be incorporated directly into the vertex fit, 
instead of a possibly biased estimate of the track parameters.  This should also be done if some a priori 
knowledge of the vertex position was used in a first individual track fit. 

3.2. A f a s t  g loba l  m e t h o d  

For the vertex fit, the fitted track parameters p, are regarded as virtual measurements and denoted 
without in the following. 

Under  the assumption that there are n tracks with the estimated parameters p~ . . . . .  p,, and the 
corresponding weight matrices G~ = C i  ~ . . . . .  G,, = C,, 1, there are 5n virtual measurements.  The parameters 
are the vertex position x and n 3-vectors q,, where q, is a generalized momentum vector at the vertex (sec 
fig. 7). Therefore, there are 3(n + 1) parameters. The charge of  a track is assumed to be known from thc 
individual track fit. The functional dependence of p~ . . . . .  p,, on the parameters is now expressed by the 

I . -  / 

J 

.... track 1 

J 

. . . . . . . . . . . . . . . . . . . . . . .  

" . .  t rack3 

Z=ZR 

Fig. 7. On the right hand side, the track fitting for single tracks is demonstrated.  For the vertex fit. the parameters  p, are considered as 
"vi r tual  measurements"  (left hand side). 
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following linear model: 

P1 

A 1 

A2 

A .  

B I 0 . . .  

0 B 2 0 . .  

. . .  0 . . .  

0 0 0 . . .  

0 
0 . ql 

o q£ 

8,1 

¢1  
-~- . . .  

C n 

(18) 

with: 

A, = ~ p / ~ x l  . . . .  q,,,  B,  = ~ p , / ~ q ,  I .... ~,,,, 

xo, q,0 approximations of x and q, (expansion point); c, = p , ( x  o, q,{})- A,x 0 - B,q,0. constants which are 
omitted without loss of generality: in the following, p,  stands for p ,  - c,. 

A, and B, are 5 × 3 matrices. A, depends also on q, and B, depends also on x. It is therefore mandatory 
that a good approximation of all parameters is available. The usual least-squares ansatz 

Jf(x,q, ..... q,,)= ~2 (P,-  A,x-B,  qi)rGs(pj- A,x-B,q,) (19) 
/ =  1 

yields the following estimates of the parameters: 

q] = M  -I "N- 
2&: 

(20a) 

with: 

D(} DI 
D[ E, 

M =  

0 

DJ 

D o = ~ AI, G,A,, 
i = !  

D, = A',G, S,, 

and with: 

D,, 

E n  

E, = BTG, B,. i > O ,  

(20b) 

(2Oc) 

N = 

A~G, ATG2 

BIG ] 0 

0 . . .  0 

. . .  

0 

If we wri teM ~ in the form: 

A~nG,, 
0 

0 
BTG. 

(20d) 

,i, . . .  C'2' 
(21a) 
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the submatrices C,; can be computed explicitly: 

I 

i "D,, " ) C,., = / - y~" D,E 'D I' 
\ 

, t ] , 

C . , =  -CI~}D,E, 1 C , . = C , l , , .  j > 0 .  

C, ,=6 , ;E ;  I + E ,  1D,1C~,,D,E; 1=6,;E, l - E ,  ID,WCot. i , . / > O .  

From eq. (20a) it follows that M ~ is the covariance matrix of the fitted parameters: 

C, . ,  = cov( . i : ,  .i: )" C . ,  = co, v( .t, q,  ), j > O, 

C , , = c o v ( q , . g i , ) .  i. j > O .  

(21b) 

(21c )  

3.3. Track association 

Although the method presented in sect. 3.2 is much faster than a conventional least-squares fit. it is still 
not economical to find the association of tracks to a common vertex by repeated application of the global 
fit to different subsets of tracks. 

Instead, we propose an iterative procedure of track association, in analogy to the progressive method of 
sect. 2.4: 

Let us assume that a vertex has been reconstructed with m tracks, giving an estimate .t ~'''~ and its 
covariance matrix Cl~'~ t~. One needs now to check whether track m + 1 is compatible with this vertex. To 

p, = A,.t + B,q,. (22d) 

It can be computed with less than 100n additional operations. It is essential to perform the X 2 test before 
the calculation of the covariance matrix which needs another (27/2  n2+  40n) operations. Note that a 
standard inversion of M alone would need ½(3n + 3) 3=  27/2n3 + 40n 2 operations! Hence this method 
yields a substantial gain already for vertices with 3 or 4 tracks, and can be applied equally well to V~}'s. 

[f there is an independent measurement v of the vertex position (e.g. knowledge of the beam profile 
obtained from elastic scattering data) with the weight matrix G, eq. (22a) has to be modified: 

[ 1 .i'= C,., G v +  E A ' , G , ( I - B , E ,  'B;'G,)p, . (23) 
I=1 

F.q. (22b) holds without change. In the computation of C ~  the matrix Do has to be replaced by D. + G. 

with 

It is important to note that the fitted parameters i" and ~, can be calculated without evaluation of the 
full covariance matrix M i 

Substitution of eq. (21b) into eq. (20a)yields the following expressions for .i" and q,: 
tl 

x = C,~,. Y'. A ' , G , ( I -  B,E,  ' B ] G ; ) p , .  (22a} 
/ 1 

q, = - E,- ~D,'.i" + E, 'BI'G,p , = E, 'B : 'G , ( -A , i -  +p , ) .  (22b) 

The amount of computation needed is proportional to the number of tracks and is in the order of a few 
hundred times n operations (as defined in section 2.3). 

The X 2 of the fit is given by substituting eq. (20a) into eq. (19): 

Pt 

X - '= Y'. ( p ; - p z ) ' G z ( p , - p , ) ,  (22c) 
/ = 1  
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this end. we consider  . i  "( ' ' ') and p,,,+~ as virtual measurements  and fit the paramete rs  x and q .... ~ by 
minimizing the X2: 

"~ T 
X ? + , = ( p . , , , - A  .... , x - B . , + , q  .... ,) O . , + , ( p . , ~ , - A  .... , x - B . , ~ , q . , + , )  

)' '(s:'""- x). + (  " i ' ~ ' } - x  ~--ts) / 

It turns out that  the solution is given just by the formulae  (22a). (22b). which yield: 

~ ' " " " [ ( C I : ' ) - ' . ~ ' " " + A ' ; ,  ,G .... , ( , - B . , + , P , , , ' , ,  rn+lG .... ,)Prn÷l], = m r ~ ( X )  ÷ 

q .... , =E , ; , ' ,  ,B.,' + , G . , , , ( - A . , . , . ~ '  .... " + p , , , , , ) ,  

using (see eqs. (20c) and (21b)): 

(24) 

(25a) 

(25b) 

[( ] ( " ' )  E- 1 l i T  I ~ ( m  ÷ i )  ~ C ( K )  ) I 1 
-0o  + At, ,+IG., .1A,,+~ - D,,,÷ 1 . ,+1-, ,+1 (25c) 

= [ (C~")- '  + AI.,, ,G.,+, ( I -  B,,,+,E~'. ,B~.,G.,,, ,)A .... , ] - '  

Therefore.  this fit is equivalent  to eqs. (22a,b) and hence to a comple te  global fit with m + 1 tracks. The 
global X: can be updated:  

X~,+, = X:., + X~+,. (26a) 

A proof  of this fact is sketched at the end of this section. Note  that  X~+ ~ can be computed  using only the 
fitted values Yc ~'~ 1) and q,,,÷ v 

It is normal ly  not necessary to update  the remaining est imated m o m e n t u m  vectorsql  "'}, (m) . . . .  q., . since it 
is more  economical  to recompute  all ~, by means of eq. (22b) at the end. It can easily be done. however,  by 
using eq. (22b): 

4[.,+ 1,= ~, , , ,  _ 1=-'Di"(.i-, -,+ 1,_ $?. , , ) .  (26b) 

X{+ ~ is x2-distr ibuted with two degrees of f reedom and can be used as a test criterion for the decision 
whether  track m + 1 is compat ib le  with the vertex .~('}. By the same algori thm a track can also be removed 
from a vertex by changing the sign of its weight matr ix  G,. 

Secondary vertices - if proper ly  recognized by the pat tern  recognit ion - bear  no new features and can 
be treated exactly in the same way as the p r imary  vertex. 

A proof  of  eq. (26a) can be obta ined in the following way. 
X~,  ~ can be writ ten as: 

T 
X ~ + , = ( P  .... , - P , , , ÷ , )  G , , + , ( P , , , + , - P . , + , ) + ( Y r ' " - Y c ' " ' + " ) r ( c l Y o " ) - ' ( Y c ' " " - k ' " " " ) .  (27a) 

We show that  the difference X~,, i - X~ is equal to eq. (27a): 

r n +  1 t t l  
2 2 ~ 

x . , + , - x . . , =  E .... " ) -  2.. ''') 
1 = 1  i = 1  

_ ,~,, , ,  + I) '~ __~ - ( , , , )  - ( , , , ,  l , ) r G , .  , .  . . . .  , , + 2  (p, - p ,  

+ ~ ( P ~ " ' } - P : " ' + " ) r G , ( P : " ' - P ~ " ' + " ) .  (27b) 
t = ' l  

The first terms in eqs. (27a) and (27b) are equal. By using eqs. (22b) and (22d) it follows that 

p~"'= A,.~'""+ " - ' " " -  (A, B,E,-'DI r . , q ,  - _ ) y c ( " ' ) + B ,  E T t B T G ,  p , ,  (28a) 
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global or 
hybrid method 

recursive method 

TPC 

vert.ex f i t . __  

x 

~, ~ - inner  detector 
~k.z . . . .  beam tube 

beam axis 

Fig. 8. An example for a program structure is shown. After a global fit in the TP(" and a recursive track following through a high 
precision detector, the "virtual measurements" for the subsequent vertex fit are obtained. 

and 

A b, = abe"" -r,h' .... ~'= ( A , -  B,E, 'D,T)(.~(""-.~ ' .... " ) .  (2Sb) 

By substituting eqs. (28a), (28b) and (22a) into eq. (27b), it turns out that the second term is equal to 0, and 

that the third term is equal to: 

m 

(k('"'-.~ ' .... " ) ' .  Y'. (A',G,A,-  D,E, 'DI' ) . ( k ( " ' - . t  ( .... ')). (29) 
t = l  

A glance at eqs. (20c) and (21b) shows that eq. (29) is equal to the second term in eq. (27a). Hence eqs. 
(27a) and (27b) are identical; q.e.d. 

4. An example 

One of the detectors (DELPHI)  at the large electron positron collider (LEP) serves as an example for the 
application of the methods discussed above. In this detector, a time projection chamber (TPC), giving a 
high number of measured space points for large angle tracks, is surrounded by several outer detector 
modules giving less powerful measurements. Inside the TPC, a high precision inner detector measuring a 
small number of coordinates improves the precision towards the vertex region (fig. 8). 

The natural choice for obtaining a track segment to start with is the TPC, because of the large number of 
measurements, the small multiple scattering and the highly homogeneous magnetic field. In this detector 
the progressive method might serve as a powerful check of the pattern recognition, particularly in the case 
of high multiplicities, but for the final track fit the global method seems to be the most appropriate one. 
Information from some of the outer detectors will be merged in by a combination of these methods. This 
will be discussed somewhere else. 

The information provided by the inner detector will be added by the progressive method. This procedure 
ensures that tracks close to each other in the vicinity of the vertex region can be well separated. Also, the 
estimate of the final track parameters is optimized where it ought to be, namely at the beam tube. 
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