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Fast vertex fitting with a local parametrization of tracks
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A fast vertex fitting algorithm has been tested, which uses a local parametrization of tracks around a fixed point. This point is
chosen to be close to the primary and short-lived secondary vertices, or to the decay vertex of a long-lived particle; hence useful
approximations may be utilised. The extrapolation of the trajectory and its error matrix to the vertex region is performed once per
track, even if the track association procedure needs to be iterated. The time spent on the computation of the fitting procedure is
proportional to the number of tracks (n) instead of n® as in a standard least-squares method where the parameters of all tracks are
fitted together at their common vertex. The method is used in the LEP experiment DELPHI at CERN. The Monte Carlo test has
been made for the ZEUS experiment at DESY. The vertex fitting quality and the time consumption etc. have been examined.

1. Introduction

The vertex reconstruction (i.e. vertex finding and
fitting) is an important task for studying the heavy
flavour physics in experiments at high energy colliders.
In order to effectively separate the secondary vertices
from the primary one, all vertices have to be well
reconstructed. In present and future colliders, the
charged track multiplicity at the primary vertex can be
quite high (in the order of 10 to 100); thus to have a
fast vertex fitting algorithm is not only desirable, but
also a necessity. This article presents a test for a fast
vertex fitting method [1] using a local parametrization
of tracks.

The goal of a “full” 3-dimensional vertex fit is to
obtain the vertex position ¥V and n 3-vectors track
momenta pi=1~n) at the vertex as well as the
associated covariance matrices. The input information
for the vertex fit consists of 5-parameters ¢, (for 3-D
tracks curved in a magnetic field) and their covariance
matrix ©, of each track at a reference point (fig. 1).
The local (i.e. “perigee”) parameters defined in section
3 describe the trajectory close to the origin point which
is a first approximation of the primary or the short-lived
secondary vertices; therefore the relationship between
q; and (V, p,) is simple if the curvature effect may be
neglected, or approximated at the first order. Also the
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Fig. 1. Relation between g; and (V, p,) in a vertex fit.

“perigee” parameters themselves carry interesting
physical information: the impact parameter and a good
approximation of the track direction at the vertex.
Moreover, by using the “perigee” parametrization, the
“full fit” (.c. the track momenta are re-evaluated with
the constraint that the trajectories go through the
fitted vertex position) can be reduced to an even faster
“simple fit”, which only estimates the vertex position
without re-adjusting the track parameters.

In this article, the ““full” vertex fitting method is
briefly reviewed in section 2. The perigee parametriza-
tion of tracks is defined in section 3. The “simple”
method for vertex cstimation is derived in section 4.
The test has used simulated tracks from the central
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tracking detector (CTD) and the vertex detector (VXD)
of the ZEUS experiment at DESY. Section 5 explains
the preparation of the test. Section 6 gives the test
results. The conclusions are drawn in section 7.

2. The “full” vertex fitting algorithm

The method [1] can be summarized as follows. The
charged track i is characterized by the parameters
4;;(j=1~5) and their weight matrix W, (=C; ', i..
the inverse of the covariance matrix) at a reference
point. The g;; are the functions of the vertex position
V=(x,, y,, z,) and the track momenta p,,(m =1~ 3)
at the vertex, i.e. ¢;; = F,(V, p;). The goal is to find the
V and p; which minimize the x2,

xt= ZA‘I.Twr Ag;,

where
Aq‘_ - qimeasured - F(V, p'_). (1)

If q;, within measurement errors, are linearly related
to variations 8V and 3p;, i.c.

F(V°+3V, p?+dp,)=F(V°, p!) + D3V +E;dp,,
(2)

where 8V and dp, are variations around first approxi-
mations ¥° and p?,

oF.(V, p;)
DY) =1 ""1"
( l)}n a‘/n ’
_ J i P 1 -1~ 1
(El)jmz apim > (.]-'1 5,”1—1 3,m 1 3),

then eq. (1) can be expressed as

x*= Y (3¢,- D3V -E;3p,)"
i
xwi(aqi - DiSV— Ei8pi)’ (3)

where 3¢, = ¢™*""! — F(V'°, p?). Minimizing the x>
w.rt. V,ie. 8y2/oV =0, we get

(Zorwo,)sv+ £ (0rwe,)o, = £ 07 Wisa.

i 7
(4)
Minimizing the x2 w.r.t. p,, i.c. 9x2/dp, = 0, we get

(ETWD, )3V + (ETWE,)3p, = ET W,3q,. (5)
The above two eguations can be rewritten as
ASV+ Y Bap =T
i , (6)

B3V +Cp, =\,
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where
A=Y DIWD, B =D WE, C,=ETWE,
i
T= ZD:’TW:'B‘L'» U= EiTwis‘Ir
i
The solution for vertex position is
oV = (A - ZB,.c,.-'B,T) —‘(T - ZB,-C,.“Ui). 7
i i
Notice that
(a-ZBicier) B
i

in eq. (7) is just the covariance matrix (i.e. Cov(V, V)
associated to 3V. Substituting 8V back into eq. (6), dp;
and Cov(p;, p;) as well as Cov(V, p,) can be obtained
[11.

Eq. (6) may be written in a matrix form as

A B, B, B (o) (T
B C, 0 ollsp| |u,
B; 0 Cz 0 0 sz _ UZ
. 0 0 . -1 .
Bl 0 0 0 - C,J\%,) U,

(8)

Standard least-squares method for vertex fitting relies
on inverting this (3n + 3) X (3n + 3) matrix (or a (4n +
3) X (4n + 3) matrix where multiple scattering is con-
sidered by introducing an extra parameter for each
track [2]) with a number of operations proportional to
n® (where n is the number of tracks). In contrast, our
method uses only small matrices and the computing
time is merely proportional to » (as shown by the
results in section 6). Hence it is particularly suitable to
be applied in an environment with high track muitiplic-
ity.

Another advantage of our method emerges when
compared with the vertex fitting method described in
ref. [2]: we handle the multiple scattering (m/s) only in
the preliminary phase (i.e. the extrapolation of the
covariance matrix of tracks to the vertex region, this is
explained at the end of section 3). As this phase is not
part of the vertex fitting procedure itself, m /s will not
slow down the vertex fitting at all.

Note also that if the matrices A, B;, C;, T and U,
are kept in memory, it is easy to add a track to (or to
remove a track from) the fitted vertex, without total
re-computation from the beginning [1].

Moreover, in this formalism it is easy to include
information on the intersection region (i.c. the beam
position and profile) for the primary vertex fit. If
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b= (xy, y,, zp) is the mean position of this intersec-
tion and C,, is its covariance matrix, one just needs to
add (V- b)TC, '(V - b) to the x? in eq. (1): this gives
an additional term C;' to the matrix A, and C; '(b -
VY to the T in eq. (6). This feature allows for some
interesting implementations. For instance, calling the
vertex fitting routine with only one track is equivalent
using a constraint on this track in order to improve its
parameters; in the case of two back-to-back collinear
tracks, it removes the nondetermination of the vertex
position along the track direction.

3. The “perigee” parametrization q = (¢, z,, 0, ¢, p)

The aim of this parametrization is to give a precise
and simple description of the trajectory in the neigh-
borhood of the expected vertex. The extrapolation of
the measured tracks to the vertex region is done once
and for all, and the vertex fitting procedure (which may
be repeated with different subsets of tracks) uses only
a short range propagation.

We assume hereafter the magnetic field to be along
beam direction (i.e. the z-axis); we define the “perigee”
P to be the point of the closest approach of the
trajectory (a helix) to the z-axis. If the origin O is
chosen to be around the interaction region, this point
is close to the primary vertex and short-lived secondary
vertices. Fig. 2 shows the x-y projection, where the
position of P is defined through the angle ¢, of the
trajectory at P, and the algebraic value of ¢ = OP. By
convention, the sign of € is positive if the angle from
OP to the direction of the track is +mw/2 (or equiva-
lently if O is at the left side of the trajectory). The
description of P in 3-D space is completed by the

% Tangent at P track
0 X
R >
a y ‘\\
P
G~ .
\Y \(’3
v
O!mr:k

Fig. 2. Definition of the perigee parameters in x -y projec-
tion.
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coordinate z,, the polar angle 6 of the trajectory with
respect to z-axis, and its signed curvature p (1/|p] is
the radius of the curvature in the x-y projection, and
the sign of p is positive if the trajectory is anticlock-
wise). With these conventions, the trajectory may be
parametrized around P as:

. Lp
x=e€sin ¢, +L cos ¢, - —2—-sm b,
o Lo ©)
y= —ecos ¢,+L sin ¢, + —2-cos dps

z=z,+L cot @,

where L is a running parameter (i.e. the distance from
P along the trajectory in the x-y projection). The
terms with L? are small if L is small w.r.t. the radius of
curvature.

To use this parametrization, i.e. ¢=(e, z,, 0, ¢,,
p), in the vertex fit, we need to express these parame-
ters as functions of the vertex parameters: the coordi-
nates (x,, y,, z,) of vertex V (see fig. 2) and the track
parameters p = (0, ¢, p) at V. Note that 8 and p do
not change when going from V to P. If we introduce
the quantities Q=x, cos ¢, +y, sin¢d, and R=
y, cos ¢, —x, sin ¢, calculations at first order in p
give:

e=—-R-0%/2,
z,=z,~Q(1-Rp)cot 6, (10)
é, =, QOp.

Then the matrices of derivatives (at the lowest order,

because the higher precision on them is not needed) in
egs. (2)-(6) have forms as:

ol /9> x, vy, z, 0 ¢, p
€ s —¢ 0 0 Q -0?%/2
z, —tc—ts 1 -QU+t)-R QR , (11)
¢, —pc—ps 0 0 1 -0
D matrix E matrix

where ¢ = cos ¢,, s =sin ¢, t =cot 0.

If one wants to fit a secondary vertex far away from
the primary vertex (e.g. the long-lived particle decay),
the “perigee” parameters may be computed w.r.t. a
displaced origin. The precision of the parametrization
is acceptable when the vertex is in a range of about
15 ~ 20 mm (see section 6) around the origin chosen to
compute the perigee. Thus, for most secondary vertices
created by the short-lived particles, they may be fitted
by using the reconstructed tracks parametrized with
respect to the main origin without re-parametrization
with respect to a shifted origin.

Let us also remark that it is very easy to compute
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Fig. 3. A parametrization of the 2-D circular track at the
reference point P.

the impact parameter D, in x-y projection with re-
spect to the fitted vertex, from (e, ¢,) and (x,, y,):

Do=¢~(x,sin ¢,—y, cos ¢,). (12)

We now give simplified expressions to propagate
the error matrix from the reference point (see fig. 1) to
the perigee region. If the original track parameters are
in cylindrical-polar system, i.e. (@, z, 8, ¢, p) at a fixed
values of r= \/x2 +y? (where 6 and ¢ are the angles
of the tangents to the track, r is the distance between
the origin and the reference point, as shown in fig. 3
for the x—y projection), and if € is small with respect

to r and r is small with respect to the radius of
curvature, we have:

0l /0> & 2 0 ¢ »p

€ r 0 0 -r -r?2

z, 0 1 —r/cos’@ 0 O . (13)
s 00 0 1

In this propagation, we assume that the radius r is
inside the vacuum beam-pipe, so that no multiple scat-
tering (m/s) occurs. If there are some materials
(located at r’) between r and vertex, it may be neces-
sary first to propagate thc track from r to #’ and to
Inciudc tic m/s contribution of the materials into the
covariance matrix; then to extrapolatc the error matrix

to the vertex region by applying eq. (13) with substitu-
tion of r by r'.

4. The “simple” vertex flitting

By using thc perigec paramctrization, a simpler
algorithm can be derived to cstimate the vertex posi-
tion without re-fitting the track parameters. In this
algorithm, the variation of transverse errors along the
track is neglected in the neighbourhood of the perigee,
and p = (0, ¢,, p) is considered to be constant. Thus
the 5§ X § covariance matrix C (which is the inverse of
W in eq. (1)) is reduced to its 2 X 2 submatrix C’
corresponding to the variables € and z,, and the 5x 3
matrix D in eq. (2) to its 2 X 3 submatrix D’ which is
the derivatives of (¢, z,) w.r.t. (x,, y,, 2,), i.c. the first
two rows in eq. (11).

Let W' be the inverse of the C’, and ¢’ = (e, z,),
then egs. (2) and (3) can be reduced to

F(V°+3v, p?)=F(v°, p?) + D3V, (14)
x*= ¥L.(3q] ~ D;3V) W/(3q/ — D;3V). (15)
i

The egs. (4) and (7) become

(Zorwo;)or- Torwsa:, 16)

-1
sV = ():D;Tw,.'n;) (ZD;Tw,.'sq;) —A-T. (17)
i i

It is convenient to choose ¥'° (i.e. the first approxi-
mation of V') as the origin, hence 8V =V and 8¢/ =g¢,.
Let x,;=(x,, ¥,, 2,); to be the coordinates of the
perigee P of the track i, then one sees that

Xpi=¢€;8in ¢;

— R
Vpi= —€; COS b, OT xp,=D["q/. (18)
Zp,- =Zp,

If we let w; = D;TW/D/, then the egs. (15) and (17) can
be rewritten as

2= X (%= V) Wi(x, = V), (19)

-1
V= (Zwi) (Zwixpi)‘ (20)
i i
The error matrix on ¥ is simply (}_w,)"".

The speed comparison among ‘different algorithms
are shown in table 1. This “simple” method also pro-
vides a means to quickly reject the tracks which may
not belong to the vertex. When solving ¥ by eq. (20),
the two factors in the right hand side can be stored;
then when calculating the x?2, by eq. (19), after having
obtained V, the contribution to the x? by eacl. individ-
ual track i can be examined. If any track (say the track
k) would contribute too much to the y?, the vertex
could be re-estimated by subtracting the w, and w, Xpk



Fig. 4. A typical event after vertex fit in x -y projection.
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Fig. 6. The same event in y -z projection.

Fig. 5. Zoom view of the fig. 4 in the vertex area. The shadowed cross indicates the location of the fitted vertex and its error.
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from the two stored factors of eq. (20), without a
complete re-calculation from the beginning.

In the same way as mentioned at the end of section
2, the information of beam position can be introduced
by adding C;;! to ,w; and C;'b to (Z,w,x ) in cq.
20).

pi

5. Test procedures

The test is undertaken in the environment of ZEUS
detector at DESY. To simplify the test, only two major
components (i.e. VXD and CTD) of the tracking detec-
tors are involved. Both components have the cylindri-
cal configurations with axes parallel to the magnetic
field (i.e. z-direction). The outline of these compo-
nents can be seen from figs. 4 and 6. The VXD’s
dimensions are +975 mm and —615 mm in z. The
sensitive region is from r=106.5 mm to 139.5 mm.
VXD does not measure z. Its resolution on r-¢ (i.e.
0,.4) is 35~160 pm depending on digitization dis-
tance. The sensitive region of CTD ranges from r = 182
mm to 794 mm, the middle point is at r =488 mm.
There are nine superlayers (each superlayer consists of
8 sense wires) inside CTD, four of them are stereo and
the others are axial. The g,_, of CTD is about 110 pm.
The stereo layers provide o, of about 1 mm.

This Monte Carlo test can be divided into four steps
as discussed below.

5.1. Event generation

For simplicity, only events with fixed track multiplic-
ity are generated, this is also convenient for the timing
(i.e. the speed) test. The charged track multiplicity has
been chosen as 5, 10, 20 etc. The ¢ distribution of
tracks is random and the event vertex is focated at the
origin. The py and p,,, distribution of tracks (fig. 7)
are similar to the neutral current events at HERA
energy (i.e. 30 Gev of electron + 800 Gev of proton)
with 02> 10 GeV? as used in ref. [3]. The tracking is
undertaken inside CTD and VXD only, and in forward
region only for further simplicity, so the polar angle 6
is restricted in between 37.1° and 90°.

The multiple scattering (m/s) of materials (e.g. the
beampipe, inner and outer walls of VXD, inner wall of
CTD) can be turned on or off in event generation. The
majority of the results shown in next section include
m/s.

In order to see how the displacement of the origin
affects the vertex fitting quality, a same set of events
(with track multiplicity of 10) is generated with the
vertex shifted from the origin (0, 0) at a fixed distance
(10 ~ 30 mm) ziong x-axis. For the test that includes
the beam profile information, the position (with the
mean at (0, 0)) of the event vertices are smeared ac-
cording to the HERA designed profile (i.c. o(x,)~270

400-
200
0’- T T‘hT]'—!—rrr‘mf
T 10 10°
Plot Distribution (Gev/c)
400- ]
200-
)
014 Fromp T TOT T
! 10 10°

P1 Distribution (Gev/c)

Fig. 7. p,o and pp distributions of the simulated tracks.

pm, o(y,)~80 um). The matrix C,' is set to
diag(1/a(x,)?, 1/0(y,)?, 0).

5.2. Track reconstruction

Inside VXD, the approach to get the smeared digi-
tization points is the same as in ref. [3]). The tracks are
reconstructed by the Kalman filtering method de-
scribed in ref. [3] except the track finding efficiency has
been assumed as 100%.

Inside CTD, the reconstructed tracks are simulated
through the following steps.

(1) The generated tracks are extrapolated to the
middle point of CTD, i.e. r = 488 mm.

(2) An approximated error matrix at the middle
point is constructed by the Gluckstern’s technics [4],
see appendix A for details.

(3) The track parameters are smeared according to
the above error matrix and the CTD’s resolutions o, _,
and ¢,. The smearing with a correlation term in the
error matrix is described in appendix A as well

(4) The error matrix and the smeared parameters
are extrapolated backwards to the position of the last
point of the VXD track, and matched with VXD track

ntnhing Farmmalica fo o i wafe [2 2N
there by norma! matching formalism AE.E. ifi T€IS. {J,0]).

5.3. Perigee parametrization

The combined track is perigee-parametrized
(according to the definitions in section 3) w.r.t. the
origin (0, 0) as the first approximation of the vertex
position, even for the additional tests (i.e. the shift of
the vertex position and the inclusion of tiic beam
profile) mentioned at the end of subsection 5.1. The
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Fig. 8. Pull plots for the reconstructed tracks before vertex

fitting.

parametrization procedure is coded as an *

appearing in table 1.

5.4. Vertex fitting

The inputs of the “simple” vertex fitting procedurce
are the number of tracks, their perigee parameters and
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Fig. 9. Deviation plots in correspondence with the fig. 8.

associated covariance matrices. The outputs are the

fitted vertex position and its covariance matrix, x2 of
the fit and the contribution of cach track (denoted as

x2).

The inputs of the “full” fit are the same as the

“simple” onc plus a first approximate vertcx position
which can be the output of a “simple” fit or just the
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Fig. 10. Vertex fitting quality of the “simple™ fitting method
(i.e. without re-fitting the track).

origin used in the perigee parametrization. The out-
puts are the same as the “simple” fit, but including
also the re-fitted track parameters and their covariance
matrices.

6. Test results

A vertex fit is meaningful only when the input
tracks are reconstructed correctly. The pull plots (fig.
8) show the quality of the reconstructed tracks before
the vertex fitting. The plots for all parameters are of
the expected shape (i.e. the mean values are at 0 and
with r.m.s. width of 1). From the deviation plots (fig. 9),
one can get a quantitative idea about absolute value of
the parameters when turning on multiple scattering.

Fig. 10 are the pull and deviation plots for the fitted
vertex position by the “simple” fitting method. For the
“full” fitting method, fig 11 shows the quality of the
fitted vertex; fig. i2 shows the quality of the re-fitted
tracks. One can sec a clear improvement by comparing
them with fig. 9, especially in ¢. Another check on the
quality of the vertex fitting is the distribution of the
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Fig. 11. Vertex fitting quality of the “full” fitting method (i.e.
with re-fitting the track).

probability of x? (fig. 13). Its flatness indicates the
fitting is creditable.

Fig. 14 shows the equivalence of the “simple” and
“fuli” fits as far as the vertex position is concerned.
Figs. 4 and 5 are the graphic display for a typical event
(without turning on m/s) in the x—y projection; fig. 6
is for the y—z projection.

The result of the test for the origin displacement is
shown in fig. 15. It can be seen that, for the vertices
apart from the origin up to about 15 mm, the perigee
parametrization w.r.t. the origin can assure a correct
fit. From fig. 16, one sees the improvement on the
precision of the vertex and track fitiing by inciuding
the information of the beam profile, especially when
track multiplicity is low.

The speed is compared in table 1. For the method
with large matrix inversion, only CPU time for the
inversion (i.e. without including any other operation) is
monitored. For the fast methods, the column “Inter-
face” indicates the time spent in the perigee
parametrization. The absolute value of CPU time is in
VAXS8800 computer unit.
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Fig. 12. Track re-fitting quality by the “full” fitting method.

7. Conclusions

The fast vertex fitting algorithm with the perigee
parametrization performs very well in our test. The
following features of the method may be concluded:

(1) It is indeed fast, especially for the primary ver-
tex with high track multiplicity.

(2) The fitting quality is quite good and can be
maintained within a range of 15 mm without need of
re-parametrization of tracks. Also the easy introduc-
tion of the beam profile can improve the fitting quality
for the primary vertex.
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Fig. 13. Distributions of probability of x> for the “simple™ (1)
and “full” (2) fitting methods.
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Fig. 14. Difference between vertex positions obtained by the
“simple” and “full” fits.

(3) From the fitting point of view, the method can
be applied to either primary or secondary vertices as
long as the track bundling (to a potential vertex) has
been done.

(4) It allows to perform the track addition to or the
subtraction from a fitted vertex without fully re-fitting.
This may be used to build up a vertex finding strategy
that separates the primary and secondary vertices.

Therefore this algorithm hopefully provides an effi-
cient way for vertex reconstruction.
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Improvement in o (x,) = o(x.)(no-beam)
v

Note: an improvement of 50% is equivalent to the factor 2 reduction in o when the beam profile is included; an improvement of
75% is equivalent to the factor 4 reduction; etc.
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Table 1
Timing comparison
Track Matrix inversion Fast methods in this article
(':‘f“‘:;'rfi:::“y Dimension CPU time “Simple™ fit “Full” fit Interface
of matrix [ms] [ms} [ms) {ms]
5 23 13.5 1.0 23 37
10 43 85 14 5.2 88
20 83 670 31 115 13.7
Appendix A In the ZEUS CTD case, N =136, L =323 mm, 0, 4=

Estimation of the error matrix at the middle point of a
uniform detector

Suppose a 2-D detector is divided into 2N equi-
spaced sensitive region. The position of the region i is
at x;=ib, where b=L/N, i=-N~N, the L is the
half-length of the detector’s sensitive area. The resolu-
tion at each position is o. A 2-D circular track can be
parametrized with

1
pr-¢= (r(p’ ¢’ m)y
r

see fig. 3. Its symmetric weight matrix can be con-
structed as

( N N N )

E,l _ENx,- gx,z

1 N N
W=— Yxz Lx}

o -N -N

N

IEH
-N

2N 0 2N3b?
1 2ar342
Now g2 3N°b 0o |, (A1)
%Nsbtl

where =¥, x; and =¥, x? vanish due to the anti-sym-
metric feature of the terms. The covariance matrix
COV is the inverse of W, ie.

9 0 -15
8N 8NL?
_ 3
Cov(pr-d:) = w I= r2-d> ZNLZ Y
45
8NL?
(A2)

110 pm.

For a 3-D track helixed along the magnetic field
(i.e. the z-axis) with a large radius of curvature, the r-z
projection is close to a straight line. The COV for the

parameters p,_ , =(z, cot 8) can be constructed simi-
larly:

-—1 0
2N,
CoV(p,..) = o? s | (A3)
2N.L?

where N, =16 (since there are only 32 stereo wire
layers in CTD), o, =1 mm.

Since there is a non-diagonal term in eq. (A.2), we
can no longer smear the parameters simply only ac-
cording to the diagonal terms. In other words, the
correlated parameters can no longer be smeared inde-
pendently. To take the correlation between two param-
eters (say x and y) into account, we may form another
pair of parameters u and v as

u=—;:(-x—+-{) and L‘=%(i—'!—), (A.4)

o, O, o, o,
so that the u and ¢ will be independent each other.
The errors on u thus are

X y 1

2
0'2=la'0f(—+-—) =-(1+ f’xy) (AS)
u 4 2 3 “

o, o, 0,0,

where o,,/(g,0,) is the correlation term in the nor-
malized covariance matrix, e.g. it is —v5 /3 in the
normalized COV

[ 5\
1 0 —-—
(i.e. 3D
1 0
1

in eq. (A.2). If we let x and y being the two correlated
parameters in p,_, then
1 V5
2= —|1-—]=0.127322,
i3l 5)
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and
ol= %(1 + ‘/—f-) = 0.872678. (A.6)
Therefore the smearings of x and y can be done as
x = (RANlg, + RAN2g, )0, +x,

= (RAN1 X 0.3568221 + RAN2 X 0.9341724)0, +x,
y = (RANlg, - RAN20, )0, +y,

= (RAN1 X 0.3568221 — RAN2 X 0.9341724) 0, +y,,

where RAN1 and RAN2 are independent Gaussian
distributed random numbers.
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