RAPPORTEUR'S REPORT: SEARCHES FOR **DARK** PHOTONS AT JEFFERSON LAB

Neal Weiner NYU January 12, 2011

• The Dark Sector doesn't want to be found (P Fox)

- The Dark Sector doesn't want to be found (P Fox)
 - It's dark

- The Dark Sector doesn't want to be found (P Fox)
 - It's dark
 - XENON only ran in the winter, no attention to summer data

- The Dark Sector doesn't want to be found (P Fox)
 - It's dark
 - XENON only ran in the winter, no attention to summer data
 - KIMS funding problem

- The Dark Sector doesn't want to be found (P Fox)
 - It's dark
 - XENON only ran in the winter, no attention to summer data
 - KIMS funding problem
 - Other mystery issues

- The Dark Sector doesn't want to be found (P Fox)
 - It's dark
 - XENON only ran in the winter, no attention to summer data
 - KIMS funding problem
 - Other mystery issues
- 4 total itineraries to get here

- The Dark Sector doesn't want to be found (P Fox)
 - It's dark
 - XENON only ran in the winter, no attention to summer data
 - KIMS funding problem
 - Other mystery issues
- 4 total itineraries to get here
 - Suggests that the impact could be high!

You are here

You are here

You are here

You are here

You are here

0.4% stars, etc

3.6% Intergalactic Gas

23% Dark Matter

73% Dark Energy

You are here

Standard Model of FUNDAMENTAL PARTICLES AND INTERACTIONS

FERMIONS matter constituent

· _ · · · · · · · · · · · · · · · · · ·							
Leptor	15 spin	= 1/2	Quarks spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electri charge		
ve electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3		
e electron	0.000511	-1	d down	0.006	-1/3		
ν_{μ} muon neutrino	< 0.0002	0	C charm	1.3	2/3		
μ muon	0.106	-1	S strange	0.1	-1/3		
v_{τ} tau neutrino	< 0.02	0	t top	175	2/3		
T tau	1.7771	-1	b bottom	4.3	-1/3		

Baryons qqq and Antibaryons qqq Baryon ar femiosic hadron. There are about 120 types of baryons.							,
ł	-	Quark	Electric charge	Mass Gevic ²	1pin		
р	proton.	uud	1	0.538	10		
p	anti- proton	ūūd	-1	0.538	10		9
n	neutron	udd		0.940	12		
Λ	lambda	uds		1.116	12		
Ω-	omega	555	-1	1.672	342		

n -- per P.

PROPERTIES OF THE INTERACTIONS

Interaction	Gravitational	Weak		Strong	
		(Electr	Fundamental	Resid	
Acts on:	Mass - Energy	Flavor	Electric Charge	Color Charge	See Residue Interaction
Particles experiencing:	All	Quarks, Leptons	Electrically charged	Quarks, Gluons	Hadro
Particles mediating:	Graviton (not art storned)	W+ W- Z ⁰	γ	Gluons	Meso
Strength relative to electromag 10 ⁻¹⁸ m	10-41	0.8	1	25	Not appl
1. two u quarks ac 3:10-17 m	10-41	10-4	1	60	to qua
ter two protons in nucleus	10-36	10-7	1	Not applicable to hadrons	20

force carriers BOSONS

Unified Electroweak spin = 1			Strong (color) spin = 1					
Name	Mass GeV/c ²	Electric charge	Name	Mass GeV/c ²	Electric charge			
γ photon	0	0	g gluon	0	0			
W- W+ 70	80.4 80.4	-1 +1	Color Charge Each-quark carrie "strong charge," These charges ha	Color Charge Each quark carries one of three types of "strong charge," also called "color charge," Three charges have nothing to do with the				

		Mesons qq Meson are bosonic hadron. There are about 140 types of mesons.					
9	-	Ren a	Quark content	Electric charge	Man GeVit ²	System	
_	π^*	pion	uđ	+1	0.140		
	к-	kaon	sū	-1	0.494	0	
۰.	ρ^*	rho	υđ	+1	0.770	,	
	B ₀	B-aero	db		5.279	0	
	η_c	eta-c	cī		2.980	0	

http://CPEPweb.org

You are here?

U(I)

 $SU(7) \times U(1)$

 $U(I) \times U(I) \times U(I)$

SU(15)

 $SU(3)\times SU(2)\times U(1)$

Neutral matter

PORTALS TO A HIDDEN SECTOR

- Suppose there is matter uncharged under the SM
- How do we couple to it?

PORTALS TO A HIDDEN SECTOR

Standard Model

Hidden Sector

Neutrino Portal

Standard Model Hidden Sector

Vector (photon) Portal

Scalar (Higgs) Portal

*NB: Non-renormalizeable portals, e.g., axion portal also can be important

Neutrino Portal

- Requires complete gauge singlet N
- Would naturally be heavy
- If charged, has coupling $\frac{\phi_d}{\Lambda} \sim \text{small}$
- Dominant signal ⇒ neutrino mass

- Requires complete gauge singlet ϕ , or $\langle \phi \rangle$ =a
- Would naturally have mass $m_{\varphi}=a$
- Has mixing with the Higgs $\sim m_{\phi}/m_{w} \sim small$
- Dominant effect: rare meson decays, non-standard Higgs decays

Standard Model

Hidden Sector

 Requires Hidden sector has an effective U(1) (can arise from breaking of non-Abelian sector)

Vector (photon)

Portal

- Natural mass scales/couplings shortly
- Mixes with the photon (if < GeV) or Z boson (if ~ M_W)
- Dominant effect is to give coupling of charged matter to new, dark photon, q= e

Hidden Sector

 α, α_{EM}

Vector (photon)

Portal

Fine structure constant

 $\epsilon, \alpha' = \epsilon^2 \alpha$

Coupliing of dark photon to EM

 α_D

dark sector coupling

Renormalizeable operator - could naturally be order I

- Renormalizeable operator could naturally be order I
- If U(I)_Y or U(I)_D is part of a non-Abelian group, ε=0 at tree level, arises at I-loop

- Renormalizeable operator could naturally be order I
- If U(I)_Y or U(I)_D is part of a non-Abelian group, ε=0 at tree level, arises at I-loop
- If matter in loop have masses split by radiative effects, naturally at 2-loop

- Renormalizeable operator could naturally be order I
- If U(I)_Y or U(I)_D is part of a non-Abelian group, ε=0 at tree level, arises at I-loop
- If matter in loop have masses split by radiative effects, naturally at 2-loop
- If both U(I)_Y and U(I)_D are in non-Abelian group, with masses split radiatively, is naturally 3-loop

- Renormalizeable operator could naturally be order I
- If U(I)_Y or U(I)_D is part of a non-Abelian group, ε=0 at tree level, arises at I-loop
- If matter in loop have masses split by radiative effects, naturally at 2-loop
- If both U(I)_Y and U(I)_D are in non-Abelian group, with masses split radiatively, is naturally 3-loop
- Natural range of $| > \epsilon > 10^{-8}$ (approximately)

- SM Fields should not couple to a new, massless A'
 - (NB: If entirety of new physics is A', mixing is not a physical effect)
- What is natural mass scale?

 If strong dynamics (similar to QCD) drive U(1)_d breaking, mass scale can be anything (theoretically)

 If U(I)_d breaking is driven by a scalar, there is a *lower* bound on the mass from two-loop effects

• In supersymmetric theories, there is an additional effect

$$\epsilon F_{\mu\nu} F_d^{\mu\nu} \Rightarrow \epsilon \int d^2 \theta \, W_\alpha W_d^\alpha$$
$$V \supset \epsilon D_Y D_d = \epsilon \, g_Y \frac{v^2}{4} \cos(2\beta) \times (\phi_d^2 - \tilde{\phi}_d^2)$$

$$m_{\phi}^2 \approx \epsilon \alpha_Y m_W^2 \sim \sqrt{\alpha' \alpha_d} m_W^2$$

A BRIEF COSMIC HISTORY

Depending on mass, A' will generally thermalize for $\epsilon > 10^{-9 \div -8}$ (i.e., $\alpha' > 10^{-18 \div -20}$)

Should be > I MeV to avoid problems with BBN

STILL A BROAD PARAMETER SPACE

STILL A BROAD PARAMETER SPACE

• m_X >1 MeV, α '>10⁻¹² would be a natural part of particle physics landscape
STILL A BROAD PARAMETER SPACE

- $m_X > 1$ MeV, $\alpha' > 10^{-12}$ would be a natural part of particle physics landscape
- Are any regions particularly motivated?

STILL A BROAD PARAMETER SPACE

- m_X >1 MeV, α '>10⁻¹² would be a natural part of particle physics landscape
- Are any regions particularly motivated?
- A dark photon would influence particle physics at the GeV scale

g-2 for the muon 3.6σ deviation from SM prediction

STILL A BROAD PARAMETER SPACE

- m_X >1 MeV, α '>10⁻¹² would be a natural part of particle physics landscape
- Are any regions particularly motivated?
- Dark matter charged under a dark force has been motivated by a variety of DM anomalies

DMWITH A DARK U(I)

DMWITH A DARK U(I)

- The presence of a dark U(I) would very likely be accompanied by stable particles
- Thus dark matter would naturally be charged millicharged for a massless force [Holdom, '84]
- Dark matter can annihilate into the dark photon
- Dark matter can scatter via the dark photon

FREEZEOUT INTO A DARK ''Classic''WIMP PHOTON

FREEZEOUT INTO A DARK ''Classic''WIMP PHOTON

Finkbeiner, NW astro-ph 0702587v2; Pospelov, Ritz, Voloshin arxiv 0711.4866

A

Tuesday, January 11, 2011

 χ

 χ

DM?

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

The spectrum at PAMELA is very hard - not what you would expect from e.g., W's

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

The spectrum at PAMELA is very hard - not what you would expect from e.g., W's

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

The spectrum at PAMELA is very hard - not what you would expect from e.g., W's

The cross sections needed are 10-1000x the thermal cross section.

PAMELA sees no excess in antiprotons - excludes hadronic modes by order of magnitude (Cirelli et al, '08, Donato et al, '08)

The spectrum at PAMELA is very hard - not what you would expect from e.g., W's

The cross sections needed are 10-1000x the thermal cross section.

m_{A'}<GeV (no antiprotons, hard leptons)

(Finkbeiner, NW, arxiv 0702587v2; Cholis, Goodenough, NW arxiv 0802.2922)

A' A' A'

m_{A'}<GeV (no antiprotons, hard leptons)

(Finkbeiner, NW, arxiv 0702587v2; Cholis, Goodenough, NW arxiv 0802.2922)

Large cross section from Sommerfeld enhancement

Motivates sub-GeV dark photon (determined by spectrum of positrons); typically 210 MeV < m_{A'} < ~GeV

COSMIC RAYS: INTEGRAL

Fig. 2. A fit of the SPI result for the diffuse emission from the GC region $(|l|, |b| \le 16^\circ)$ obtained with a spatial model consisting of an 8° *FWHM* Gaussian bulge and a CO disk. In the fit a diagonal response was assumed. The spectral components are: 511 keV line (dotted), Ps continuum (dashes), and power-law continuum (dash-dots). The summed models are indicated by the solid line. Details of the fitting procedure are given in the text.

Large excess of cosmic ray positrons (low energy)

COSMIC RAYS: INTEGRAL

WIMP-WIMP should induce WIMP excitations subsequent decays should produce e+e- pairs

Possible origin for INTEGRAL positron excess

D.Finkbeiner, NW, 0702587v2

Also no dependence on α'

in the winter, moving against wind

DMS

0. ALog₁₀(S2/S1) -0 -0 30 60 80 -0.6 20 -0.8 XENON10 45 5 10 15 20 25 30 35 40 Nuclear Recoil Equivalent Energy (keV)

Scattering via dark photon naturally off-diagonal - realization of "inelastic dark matter"

DM Interpretation: variation in WIMP scattering as Earth moves around sun (with and against galactic motion)

DM Interpretation: variation in WIMP scattering as Earth moves around sun (with and against galactic motion)

DM Interpretation: variation in WIMP scattering as Earth moves around sun (with and against galactic motion)

DM Interpretation: elastic scattering of ~7GeV WIMP

DM Interpretation: variation in WIMP scattering as Earth moves around sun (with and against galactic motion)

DM Interpretation: elastic scattering of ~7GeV WIMP

Tuesday, January 11, 2011

DM Interpretation: variation in WIMP scattering as Earth moves around sun (with and against galactic motion)

DM Interpretation: elastic scattering of ~7GeV WIMP DM Interpretation: unquantified (**preannounced March 2010**) "Light" WIMP

Motivated by recent data from CoGeNT and the DAMA annual modulation signal, we discuss collider constraints on minimal supersymmetric standard model neutralino dark matter with mass in the 5-15 GeV range. The lightest superpartner (LSP) would be a bino with a small Higgsino admixture. Maximization of the dark matter-nucleon scattering cross section for such a weakly interacting massive particle requires a light Higgs boson with $\tan \beta$ enhanced couplings. Limits on the invisible width of the Z boson, combined with the rare decays $B^{\pm} \to \tau \nu$, and the ratio $B \to D \tau \nu / B \to D \ell \nu$, constrain cross sections to be below $\sigma_n \lesssim 5 \times 10^{-42} \text{ cm}^2$. This indicates a higher local Dark Matter density than is usually assumed by a factor of roughly six would be necessary to explain the CoGeNT excess. This scenario also requires a light charged Higgs boson, which can give substantial contributions to rare decays such as $b \to s\gamma$ and $t \to bH^+$. We also discuss the impact of Tevatron searches for Higgs bosons at large $\tan \beta$.

model

$$\sigma \approx \frac{\alpha_d \alpha_{EM} \epsilon^2}{m_\phi^4}$$

$$\tau \approx \frac{\alpha_d^2}{m_\chi^2}$$

 \cap

allows large cross section with reasonable relic abundance

- Rare process
 - High luminosity
 - Extremely low backgrounds

- Rare process
 - High luminosity
 - Extremely low backgrounds
- LHC complementary as produceable in SUSY cascade decays
 - Cascades fairly unique to SUSY
 - Much harder to directly discover

Find A' via spectrometry, vertexing (A' decays), or "MET" (target recoil)

Additional complications:

- Additional complications:
 - <u>decay modes</u>?

- Additional complications:
 - <u>decay modes</u>?
- Even when motivated by cosmic rays, don't know that strongest coupled A' decays to charged pairs

- Additional complications:
 - <u>decay modes</u>?
- Even when motivated by cosmic rays, don't know that strongest coupled A' decays to charged pairs
- Non-Abelian models can be very complicated

- Additional complications:
 - <u>decay modes</u>?
- Even when motivated by cosmic rays, don't know that strongest coupled A' decays to charged pairs
- Non-Abelian models can be very complicated
- Important to develop general approaches for the future

NEARTERM REACH OF JLAB

WHAT WOULD HAPPEN IF IT WERE FOUND

- The discovery of the "Theory Space Landscape"
- immediate need for confirmation/redundancy

 Jefferson Lab has the opportunity to be the LHC of weakly coupled physics

- Jefferson Lab has the opportunity to be the LHC of weakly coupled physics
- Accessible parameter space is motivated, but not converse

- Jefferson Lab has the opportunity to be the LHC of weakly coupled physics
- Accessible parameter space is motivated, but not converse
- Need redundant experiments multiple decay modes

- Jefferson Lab has the opportunity to be the LHC of weakly coupled physics
- Accessible parameter space is motivated, but not converse
- Need redundant experiments multiple decay modes
- This is only the beginning: need development of future techniques

- Jefferson Lab has the opportunity to be the LHC of weakly coupled physics
- Accessible parameter space is motivated, but not converse
- Need redundant experiments multiple decay modes
- This is only the beginning: need development of future techniques
- Potential impact while speculative to rival LHC