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Abstract

Measurements of Hadronic B Decays to Excited Charm Mesons, Observation

of a New Charm Resonance

and

Construction of a Silicon Vertex Detector for CLEO II.V

by

Timothy Knight Nelson

We describe measurements of the branching ratios

B (B−→D�+ π− π−total
)

= (29.2 ± 4.5 ± 3.8 ± 3.1)×10−4

B (B−→D�+ π− π−non-res
)

= (9.7 ± 3.6 ± 1.5 ± 1.9)×10−4

B (B−→D1(2420)0 π−)B (D1(2420)0→D�+ π−) = (6.9 +1.8
−1.4 ± 1.1 ± 0.4)×10−4

B (B−→D0
1(j = 1

2 )π−)B (D0
1(j = 1

2 )→D�+ π−) = (10.6 ± 1.9 ± 1.7 ± 2.3)×10−4

B (B−→D�
2(2460)0 π−)B (D�

2(2460)0→D�+ π−) = (3.1 ± 0.84 ± 0.46 ± 0.28)×10−4,

using data collected by the CLEO II detector. These measurements provide the first ob-

servation of the D0
1(j = 1

2 ) with a mass and width of 2.461+0.053
−0.049 GeV and 290+110

−91 MeV

respectively. The mixing angles between the partial waves and strong phase shifts among

the resonances are also measured assuming one possible parameterization of the amplitude.

A method allowing full reconstruction of the signal without reconstruction of the D meson in

the final state is used. The measurements are extracted using an four-dimensional, unbinned,

maximum-likelihood fit to the distributions of the D�+π− mass and the decay angles.

The primary element of the CLEO II.V upgrade was the installation of a three-layer

Silicon Vertexing Detector. The design and construction of this detector are described in

detail.
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Chapter 1

Introduction

1.1 The Standard Model

The standard model provides a description of the elementary nature of matter that

has been remarkably flexible in accounting for several decades of experimental discoveries.

The theory resulting from this evolution is self-consistent, but fundamental properties have

no explanation. These include the relationships between quarks and leptons, and between

the strong, electroweak and gravitational interactions. This consistency without explanation

has made it unattractive as a ‘theory of everything.’

The success of the standard model makes the development of a more unified theory

a daunting task. There are no spectacular failures to focus the search and a large number of

these theories match the limited experimental evidence available. None of the alternatives

can equal the predictive power of the standard model after decades of refinement.

This gives the experimentalist two tasks, searching for inconsistencies with the

standard model and further refining our knowledge of the pieces we are trying to unite. We

must first decide where we are likely to encounter a contradiction and where more data will

differentiate among the candidates. One of these frontiers is the study of how the quarks

couple to the weak interaction. Another is the study of how the strong interaction determines

the spectra and decays of the observed bound states of quarks.

3



4 CHAPTER 1. INTRODUCTION

1.1.1 The Weak Interaction

One of the puzzles left unanswered by the standard model is the relationship be-

tween leptons and quarks. There are six of each arranged in three generations:

Leptons


e νe

µ νµ

τ ντ




Quarks


u d

c s

t b




The standard model offers no explanation for this apparent symmetry. Adding to this mys-

tery are the striking differences between their properties. Quarks interact strongly while the

leptons lack any strong interactions. All of the quarks have mass and fractional charge while

the leptons either have mass and unit charge or (apparently) neither property. Finally, lep-

tons and quarks have very different couplings to the weak interaction: the mass eigenstates

of the quarks are not the weak eigenstates, leading to weak decays between generations. This

fact is incorporated into the standard model by replacing the charge -1/3 quarks, (d,s,b), by

mixed quarks in the weak coupling:




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 . (1.1.1)

The matrix Vij is the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix [1]. As-

suming unitarity of this mixing, the matrix can be uniquely described by four parameters

— three real angles and a complex phase. The angles are essentially mixing angles between

the quark generations. A non-zero phase gives rise to CP violation. This is the only possible

explanation for CP violation in the standard model.

The relationships resulting from unitarity are experimentally testable. One such

expression is derived from application of the unitarity constraints to the first and third

columns:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (1.1.2)



1.1. THE STANDARD MODEL 5

To simplest approximation, the CKM matrix is the identity matrix, allowing the simplifica-

tion

V ∗
ub + VcdV

∗
cb + Vtd = 0. (1.1.3)

This can be visualized as a triangle in the complex plane, as shown in Figure 1.1. Standard

model CP-violating effects are proportional to the area of this triangle.

α

V

γ β
*-Vcd cb

Vub
Vtd*

Figure 1.1: One of the triangles obtained by application of the unitarity constraint to the
CKM matrix. The relationships between sides and angles enforced by closure of the triangle
mirror those between the magnitudes and complex phases of the CKM matrix enforced by
unitarity.

We can overconstrain this triangle by independently measuring both the lengths

of its sides and the angles between them. If these measurements are consistent, then we

have strong confirmation of the CKM matrix as the source for CP violation. If not, other

mechanisms outside of the standard model must be invoked in order to explain the data.

Discovery of such an inconsistency would produce a revolution in elementary particle physics

and help identify the correct route to a more fundamental theory.

Since Vcd is already well determined, the measurements of the sides we still need

are

• Vcb — from b → clνl decays

• Vub — from b → ulνl decays

• Vtd — from B0-B0 mixing.

Quark-level diagrams for these decays are shown in Figure 1.2. To determine the angles of

this triangle, we need
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• α — asymmetries in b → uūd from B0 decays

• β — asymmetries in b → cc̄d from B0 decays

• γ — asymmetries in b → uūd from B0
s decays.

The use of semileptonic decays simplifies the extraction of Vcb and Vub since there are

no interactions between the leptons and quarks in the final state. As the largest single branch-

ing ratio of the B meson, the decay B→D� l νl provides the most sensitive measurement of

Vcb. This decay mode is also important to measurements of B0-B0 mixing(Vtd) and decay

asymmetries in B0 decays (α, β). One must ‘tag’ the species of one B0 while reconstructing

the decay of the other. Measuring the sign of the primary lepton from B0 → D�+	−ν is the

simplest and single most efficient tagging method because of the large branching ratio of this

mode (4.60 ± 0.27% [2]).

Only the decays to the L = 0 charm mesons, the D and the D�, are well measured.

The contributions from decays to the L = 1 charm mesons, the DJ , are a significant un-

certainty in interpretation of B→D� l νl decays in measuring of Vcb and tagging B mesons

[3, 4]. As a result, improved measurements of B→DJ l νl will be important for reducing the

errors on four of the six parameters of the unitarity triangle; Vcb, Vtd, α and β.

Unfortunately, these decays are very difficult to reconstruct. With smaller branch-

ing ratios than B →D� l νl and a lack of kinematic constraints due to the undetected neu-

trino, it is difficult to obtain a significant signal. It is simpler to measure the hadronic decay,

B → DJ π, where the virtual W decays to a pair of quarks rather than leptons as shown

in Figure 1.3. Without the missing neutrino to contend with, there are considerably more

constraints.

The primary difficulty in this approach is converting a measurement of B →DJ π

into meaningful information about B→DJ l νl. The interactions between the quarks in the

final state and the possibility of internal spectator decays complicate the hadronic decays

considerably. However, the high q2 of this decay may allow us to ignore some of these

effects. If we assume no final state interactions due to the small time-integrated overlap of

the wavefunctions of the outgoing mesons, we have the relationship

Γ(B−→D0
J π−)

dΓ
dq2 (B−→D0

J 	− ν�)|q2=m2
π

= 6π2f2
π |Vud|2 Γ(B−→D0

J π−)
Γ(B0→D+

J π−)
. (1.1.4)
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Figure 1.2: Quark level diagrams of the decays used to determine the magnitudes of (a)
Vcb, (b) Vub and (c) Vtd. The semileptonic decays, (a) and (b) are chosen to avoid strong
interactions between the mesons in the final state. While both u and c quarks also contribute
to the box diagrams (c), the top quark diagram dominates.
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Figure 1.3: Quark level diagrams of hadronic B decays. The decay B−→D0
J π− can proceed

through both external (a) and internal (b) spectator diagrams with competing amplitudes
a1 and a2. Only the external spectator decay is possible for B0→D+

J π− (c).
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This type of approximation has worked well for other B decays with q2 similar to B−→D0
J π−

[5]. Thus, careful measurements of B →DJ π decays may be very useful in the large scale

effort to measure the unitarity triangle.

1.1.2 The Strong Interaction

At low energies, the strong coupling constant, αs, is larger than unity. This explains

the confinement of quarks and gluons inside hadrons and makes calculating the properties

of those hadrons difficult since higher order corrections in QCD contribute as powers of αs.

This limit of QCD is the least understood part of strong interaction phenomenology. It is

reasonable to hope that a better understanding of these bound states will lead to a better

understanding of the strong interaction and help us unite QCD with the electroweak theory.

In order to make predictions in this regime, there are some approximate symmetries

we may employ. The classic example is the isospin symmetry between the u and d quarks

under the assumption that mu −md << ΛQCD. Recently, it has been recognized that there

is another approximate symmetry for the heaviest quarks, Q, under the assumption that

mQ >> ΛQCD [6, 7]. This symmetry gives rise to heavy quark effective theory (HQET) which

makes many predictions about the properties and decays of hadrons with one heavy quark by

expanding in corrections around this limit. These include predictions about hadronic decays

of the B and the spectroscopy of the DJ . As will be shown below, detailed measurements

of the decay sequence B →DJ π,DJ →D� π,D� →D π can test these predictions, providing

useful information about the strong interaction.

1.1.3 DJ Spectroscopy

The simplest DJ mesons consist of a light quark and a charm quark in a relative

(orbital angular momentum) L = 1 state. The total parity is positive, because it is the

product of negative relative parity of the quark and antiquark, and the negative parity of

the L = 1 state. The L = 1 combines with the total spin of S = 0 or 1 to produce a set of

four states. In the limit that mc � ΛQCD, we expect a singlet with J =0 and S =0, and a

triplet with J =0, 1, 2 and S =1 as shown on the left of Figure 1.4. The splitting between the

triplet from the singlet would be caused by a spin-spin interaction, and the splitting among

the triplet levels by a spin-orbit interaction. The actual magnitude of the splitting between

the singlet and triplet would probably be less than illustrated, because spin-spin interactions
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are suppressed in an L=1 state, at least relative to an L=0 state.

+

+0

2
1+

+

P

D  (2460)

D (j=1/2)
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*

*
2

1/2

3/2

3/2

J

1

m
as

s

j

Λcm  >>

D (j=1/2)

QCDm  <<

1D (2420)

c QCDΛ

1

0

Figure 1.4: The spectroscopy of the L = 1 DJ mesons.

However, the limit mc � ΛQCD is a poor approximation: the limit of heavy quark

symmetry, mc � ΛQCD, should better describe these mesons. In this limit, the spin of the

heavy quark decouples from the other angular momenta, and we expect the two doublets

shown on the right in Figure 1.4. One doublet has j = 1
2 and the other j = 3

2 , where j is the

total angular momentum excluding the spin of the heavy quark. Near this limit, the splitting

between the two doublets is caused by a spin-orbit interaction of the light quark, and the

splitting between the two levels in the doublet is caused by a spin-spin interaction.

The J = 0 state must have j = 1
2 and the J = 2 state, j = 3

2 . However, the two

JP = 1+ states may be a mixture of j = 1
2 and j = 3

2 . The details of this mixing probe the

breaking of the heavy quark symmetry due to the finite mass of the charm quark [7, 8].

Conservation of parity and angular momentum restrict the final states and partial

waves that are involved in the decays of the various DJ mesons. Table 1.1 summarizes the

possibilities for the L = 1 D0
J mesons. While the 2+ may decay via a d-wave alone, the 1+

states may decay via either a d-wave or an s-wave. In the limit of heavy quark symmetry,

the j = 3
2 decays via a d-wave alone, and is therefore a narrow resonance; while the j = 1

2

decays via the s-wave alone, and is therefore a broad resonance. Our four-dimensional fit,
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which constitutes a partial-wave analysis of the D0
J decays, provides a measurement of the

HQET-breaking mixing between the 1+ states, as manifested by the presence of the s-wave

in the decay distribution of the narrow 1+ state, and the presence of a much smaller amount

of d-wave in the decay distribution of the broad 1+ state.

Table 1.1: The L = 1 D0
J mesons and their allowed decays. Neither the D�

0(j = 1
2 )0 nor the

D0
1(j = 1

2 ) have been observed, prior to this work. In the limit of heavy quark symmetry, the
D1(2420)0 decays only by a d-wave, and D0

1(j = 1
2 ) only by an s-wave. Masses and widths

here are taken from the 1998 Review of Particle Physics [2].

Mass Width Allowed Partial HQET
State JP

(MeV) (MeV) decays waves allowed
D�

0(j = 1
2 )0 0+ — — Dπ s s

D1(2420)0 1+ 2422.2±1.8 18.9+4.6
−3.5 D�π s,d d

D0
1(j = 1

2 ) 1+ — — D�π s,d s
D�

2(2460)0 2+ 2458.9±2.0 23± 5 D�π, Dπ d d

From Table 1.1, the three states D1(2420)0, D0
1(j = 1

2 ), and D�
2(2460)0 are able to

decay to D�+π−. These are the three states that we characterize with the four-dimensional

fit to the variables describing B−→D�+ π− π− decay.

1.1.4 B−→D0
J π− Decay Amplitudes

The full description of the B− → D�+ π− π− decay is rather involved, and we

make the description in five steps. First, we start with a review of the part of the angular

distribution that has been used until now to extract information on the DJ : the helicity

angle of the D�+ → D0 π+ decay. Second, we incorporate the additional two decay angles

that describe the B− →D�+ π− π− decay. Third, we write down the ‘grand amplitude’ in

Eq. 1.1.23, which includes contributions from the various resonances, and the non-resonant

decays. Fourth, we discuss the mixing of the s-wave and d-wave contributions to the decays of

the JP = 1+ states, and the complex phases. Last, we address the complex-valued resonant

amplitudes, described by Breit-Wigner functions.

The angle in the D�+ rest frame of the D0 with respect to the direction of the boost

that puts the D�+ back into the D0
J rest frame is denoted here by θ3, and is portrayed in

Fig. 1.5. The angle θ3 can be used to analyze the partial wave content of the interaction
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D D

π3

D

J
* θ32π

Figure 1.5: Portrayal of the DJ decay, and the variable θ3. The DJ decays to D�π, with
the resulting pion denoted here by π2. The helicity angle θ3 is defined in the rest frame of
the D�, as the angle between the boost that would take the D� back into the DJ rest frame,
and the direction of the daughter D; the pion from the D� →Dπ decay is denoted here by
π3. The angle θ3 can be used to deduce the partial waves that contribute to the DJ decay,
independent of the initial polarization state of the DJ .

that mediates the D0
J decay, independent of the initial state of the D0

J (for those D0
J that

are able to decay to D�π). The expected distributions for the various cases are [9]

dN

d cos θ3
∝




sin2 θ3 ( pure 2+ d-wave decay )

1 + 3 cos2 θ3 ( pure 1+ d-wave decay )

1 ( pure 1+ s-wave decay ).

(1.1.5)

The variable θ3 provides information on the partial wave of the decay because the

direction of the D�+, in the D0
J rest frame, must be orthogonal to the direction of the orbital

angular momentum of the partial wave. Then, the spin of the D�+ must combine with the

orbital angular momentum of the partial wave to add up to the DJ total J . So, for example,

in the d-wave decay of the 2+, the helicity-0 state of the D�+ is forbidden, because the

helicity-0 state would spoil angular momentum conservation; a distribution in D�+ helicity

angle characteristic of the helicity ±1 states, sin2 θ3 results. For the s-wave decay, the D�+

carries off the angular momentum of the D0
J , but since the s-wave is uniformly distributed, no

correlation between that angular momentum and the direction of the D0
J survives, yielding

the flat distribution. For the d-wave decay of the 1+ state, a few Clebsch-Gordan coefficients

can be used to obtain the 1+3 cos2 θ3 distribution, which is very nearly equivalent to a pure
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cos2 θ3 distribution, characteristic of a helicity-0 D�+ decay.

The D1(2420)0 has been observed with a width and distribution in θ3 consistent

with the d-wave decay of the 1+ state [9, 10, 11, 12]. Thus, the D1(2420)0 has been identified

as predominantly j = 3
2 and the implication is that the other 1+ state will be mostly j = 1

2 .

The expected s-wave decay of the j = 1
2 state suggests a width exceeding 100 MeV, and a

flat distribution in cos θ3. The flat distribution makes detection of the D0
1(j = 1

2 ) a challenge

when the polarization of the DJ is unconstrained.

More information is available in the angular distributions of D0
J mesons produced

by the two body decay B−→D0
J π−. Because the B and π are both pseudoscalars, the D0

J

mesons are produced in a helicity-0 state. This constraint on the spin-density matrix of the

D0
J states provides two more variables that distinguish among the D0

J and the partial waves

that mediate their decays. The first, which we shall call θ2, is analogous to the helicity angle

of the D�+ decay, but for the D0
J : θ2 is the polar angle in the D0

J rest frame between the

boost back to the B rest frame, and the D�+ direction. The second is the angle between the

plane defined by the DJ → D� π decay and the similar plane for the D�+ → D0 π+ decay.

This angle, χ, is the difference between the azimuthal angles of the decays, φ2−φ3. The

relationships among the two body decays and these variables are shown in Figure 1.6.

We calculate the amplitude, as a function of the decay angles, that results from the

decay of the helicity-0 D0
J through each partial wave by use of the helicity formalism [13, 14]:

AJ(Ω2, Ω3) ∝
∑
λD�

DJ�
0λD�

(Ω2)AλD� 0D
1�
λD� 0(Ω3), (1.1.6)

where

Ω2 = (θ2, φ2) (1.1.7)

Ω3 = (θ3, φ3), (1.1.8)

and the sum is over the D� helicity states, λD� = {−1, 0, 1}. The functions Dj
m′m(Ωi) are

given by

Dj
m′m(Ωi) = e−iφim

′
dj

m′m(θi)eiφim, (1.1.9)

where the dj
m′m(θi) are the usual d-functions [2]. The AλD� 0 come from the Jacob-Wick

transformations that allow one to translate from the partial wave basis into the helicity basis

of the D functions [15]. For decays of the D1 we have

D1�
0−1(Ω2)D1�

−10(Ω3) = −1
2
eiχ sin θ2 sin θ3 (1.1.10)
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Figure 1.6: Decay angles in the two body decay sequence B→DJ π, DJ →D� π, D�→D π.
The polar decay angles θ2 and θ3 are defined in the rest frames of the DJ and D� respectively.
This diagram is portrayed in the rest frame of the DJ .
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D1�
00(Ω2)D1�

00(Ω3) = cos θ2 cos θ3 (1.1.11)

D1�
01(Ω2)D1�

10(Ω3) = −1
2
e−iχ sin θ2 sin θ3. (1.1.12)

The Jacob-Wick transformations for decay from a JP =1+ state are

A10 = A−10 =

√
1
3
|s〉 +

√
1
6
|d〉 (1.1.13)

A00 =

√
1
3
|s〉 −

√
2
3
|d〉 , (1.1.14)

where s and d are the amplitudes of the s-wave and d-wave contributions to the decay.

Insertion of equations (6-10) into equation (2) gives the decay amplitude of a 1+ in terms of

the s-wave and d-wave components:

AJ(Ω2, Ω3) ∝ a1s(cos θ2, cos θ3, χ) |s〉 + a1d(cos θ2, cos θ3, χ) |d〉 . (1.1.15)

Thus, the s-wave and d-wave angular amplitudes for the decay of a 1+ state are (ignoring

leading constants)

a1s(cos θ2, cos θ3, χ) = cos θ2 cos θ3 − sin θ2 sin θ3 cosχ

a1d(cos θ2, cos θ3, χ) = −2 cos θ2 cos θ3 − sin θ2 sin θ3 cosχ.
(1.1.16)

The relative (−) sign between a1s and a1d when θ2 =θ3 =0 is a result of the conventions of the

helicity formalism. The results of the fit to the data, described in Table 5.2, in effect reverse

this convention, through a strong phase δ1≈−π, so the data favor constructive interference

between the two partial waves when θ2 =θ3 =0. Recovery of two of the angular distributions

of Eq. 1.1.5 can by obtained by integrating the appropriate |a|2 over θ2 and φ2.

For the 2+ DJ meson decay we have

D2�
0−1(Ω2)D1�

−10(Ω3) = −
√

3
2

eiχ sin θ2 cos θ2 sin θ3 (1.1.17)

D2�
00(Ω2)D1�

00(Ω3) =
1
2
(
3 cos2 θ2 − 1

)
cos θ3 (1.1.18)

D2�
01(Ω2)D1�

10(Ω3) = −
√

3
2

e−iχ sin θ2 cos θ2 sin θ3. (1.1.19)

The Jacob-Wick transformations for the 2+ decay are

A10 = −A−10 = −
√

1
2
|d〉 (1.1.20)

A00 = 0. (1.1.21)
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So for the angular amplitude of the 2+ decay, defined in a manner analogous to the angular

amplitudes a1s and a1d, we have (ignoring leading constants)

a2(cos θ2, cos θ3, χ) = −i sin θ2 cos θ2 sin θ3 sin χ. (1.1.22)

The leading factor of −i is also the result of the conventions of the helicity formalism; in the

fit to the data, described in Table 5.2, the strong phase δ2 takes a value that nearly cancels

this −i. Integration over θ2 and φ2 gives the sin2 θ3 distribution of Eq. 1.1.5.

Figure 1.7 shows the complete set of two-dimensional projections of the resulting

angular distributions for Monte Carlo simulated signal. These plots include the effects of ac-

ceptance and smearing in our reconstruction method. The area of each square is proportional

to the number of reconstructed and accepted events in that bin.

Before squaring these amplitudes to obtain the angular distributions for the fit, we

must multiply by the appropriate, complex Breit-Wigner amplitudes. We denote these as

A1n, A1b and A2 for the narrow 1+, broad 1+ and 2+ states respectively. We adopt the

convention that there is no strong phase associated with the narrow 1+ resonance, and then

allow a strong phase δ1 for the broad 1+, and additional strong phases δ2 and δn for the 2+

and non-resonant components. The complete expression for the ‘grand’ decay amplitude A
is then

A = α1n A1n

(
a1d cosβ + a1se

iφ sin β
)

+ α1b A1b

(
a1s cosβ − a1de

iφ sin β
)

eiδ1

+ α2 A2 a2 eiδ2

+ αnon−res eiδn .

(1.1.23)

The coefficients α characterize the amount of amplitude that each resonance contributes. In

the case of no interference, the yield that can be attributed to each component is proportional

to the respective α2
i . The angles β and φ (both real) characterize mixing between the JP = 1+

states.

We can also parameterize the mixing through the off-diagonal terms in the mass

and decay matrices as follows. Call state #1 that superposition of JP = 1+ states which

may directly decay via only a d-wave intermediate state to D�+π−, and state #2 that

superposition of 1+ states which may directly decay via only an s-wave intermediate state

to D�+π−. Write the representation of the 2 by 2 hamiltonian of the system as:

H = (M− i

2
Γ)I +

1
2
(∆M− i

2
∆Γ)σz + (M12− i

2
Γ12)σx, (1.1.24)
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Figure 1.7: The reconstructed angular distributions for Monte Carlo of B−→D0
J π−, D0

J →
D�+ π−, D� →D π decays through the 1+ d-wave, 1+ s-wave and 2+ D0

J . Each row shows
the projection of the three-dimensional angular distribution onto two of the three angles.
Acceptance and smearing are included: the area of each square is proportional to the number
of reconstructed and accepted events in that bin.
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where M = 1
2 (M1 +M2) and Γ = 1

2 (Γ1 +Γ2) are the mean mass and width of the two states,

the differences are ∆M(Γ) = M1(Γ1) − M2(Γ2), and M12 and Γ12 characterize mixing. I,

σz, and σx are the identity and Pauli-spin matrices.

Physically, M12 might arise from a spin-spin interaction of the charm and light

quark, or from off-shell transitions between the states #1 and #2. Γ12 might arise from on-

shell transitions between the states, perhaps through intermediate states like Dππ. Given

the definitions of states #1 and #2, on-shell transitions through D�+π− itself do not occur,

because, from Eq. 1.1.16, the angular functions are orthogonal when integrated over the three

decay angles θ2, θ3, and χ.

The masses and widths of the eigenstates, i.e. the observed resonances, follow

directly from Eq. 1.1.24 and the analogy with spin up and down in a magnetic field:

M̂± − i

2
Γ̂± = M − i

2
Γ ±
{

1
4
(∆M − i

2
∆Γ)2 + (M12 − i

2
Γ12)2

}1/2

. (1.1.25)

The mixing angles β and φ can be obtained with the help of the intermediate

complex number z:

tan z ≡ M12 − i
2Γ12

1
2 (∆M − i

2∆Γ)
(1.1.26)

eiφ tan β ≡ tan
z

2
. (1.1.27)

From Eqs. 1.1.26 and 1.1.27, one can infer that a zero value for φ means that ∆M− i
2∆Γ and

M12− i
2Γ12 would share the same complex phase. The sign convention in Eq. 1.1.16 could be

changed to a relative + sign, between the s-wave and d-wave components at θ2 =θ3 =0, with

the consequence that β would need to be changed to −β, and all the strong phases would be

advanced (or retarded) by π.

The two narrow resonances are described by non-relativistic Breit-Wigner ampli-

tudes (A1n and A2):

Anrel =
Γ/2

M − E − iΓ/2
, (1.1.28)

where E = M(D�+π−) and M and Γ are the mass and width of the resonance. However,

because the 1+ state is broad, it is important to use the relativistic Breit-Wigner and include

the energy dependence of the width. The form for the amplitude under these circumstances

is [2, 16]

Arel =

√
EΓ(E)

M2 − E2 − iMΓ(E)
. (1.1.29)
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The energy-dependent width is given by [16]

Γ(E) = Γ0
p�

p�
0

M

E
. (1.1.30)

The first factor is the phase space factor for an s-wave decay, where p� is the decay three-

momentum in the rest frame of the resonance and the p�
0 is the on-shell value. The second

is the barrier penetration factor ρ(E)
ρ(M) with ρ(E) = E.
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Chapter 2

Reconstruction Method

2.1 Introduction

Product branching ratios for the decay chain B− → D0
J π−D0

J → D�+ π−D�+ →
D0 π+ are expected to be on the order of 10−4–10−3. Yet, with millions of B mesons in

the CLEO II data, assembling the large sample of these decays required for the partial-wave

analysis is very difficult. The primary reason for this is the low reconstruction efficiency for

the D meson. This limitation is common to the study of all B decays with a D meson in the

final state.

With only weak decay channels and a relatively large mass, the D meson has many

decay modes and most of the width decays to high multiplicity final states. Selecting the

largest, low multiplicity modes that can be fully reconstructed (see Table 2.1) typically results

in reconstruction of ≈ 10% of the width.

It is possible to avoid this limitation. Consider reconstruction of the decay sequence

B → D�X , D� → Dπslow, (2.1.1)

where the B is produced with known energy at the Υ(4S). As will be shown below, it

is possible to reconstruct the kinematics of the decay sequence by reconstructing only the

pseudo-particle X and the πslow: no reconstruction of the D is necessary.

By performing this reconstruction with X = π−π−, we may obtain the high statis-

tics sample of B− →D�+ π− π− we need for the partial-wave analysis of the D�+π− reso-

21
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Table 2.1: Modes typically used for full reconstruction of the D0 meson. The acceptance is
shown for typical reconstruction efficiencies.

Mode BR εrecon acceptance
D0 → K−π+ 0.04 0.72 0.02
D0 → K−π+π0 0.14 0.72×0.5 0.035
D0 → K−π+π+π− 0.08 0.74 0.02
D0 → K−π+π+π−π0 0.04 0.74×0.5 0.005
Total ≈ 10%

nances described in Chapter 1.

2.2 Variables and Constraints

There are five particles in the sequence described by Eq. 2.1.1 (B,D�,X ,D,π). One

needs four variables (a 4-momentum) to describe each particle. A total of 20 = 5×4 variables

are then needed to completely describe the sequence described in Eq. 2.1.1. The constraints

we exploit are

1. energy-momentum conservation in the two decays, 4×2 = 8 constraints,

2. the B mass of 5279± 2 MeV (1 constraint),

3. the B energy, or the beam energy of CESR at the Υ(4S), EB = 5290 ± 3 MeV. (In

practice, we use the CESR beam energy for the event undergoing reconstruction) (1

constraint),

4. the D� mass: 2010.1± 0.6 MeV for the D�+(1 constraint),

5. the four reconstructed variables that describe the X . These may be taken as the

mass of X , which may itself be reconstructed from its decay products, and the three

momentum components of X(4 constraints),

6. the four reconstructed variables that describe the πslow, which may be taken as the

π mass, 139.57 MeV for the π+, and the three measured momentum components. (4

constraints)
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7. the mass of the D: 1864.5± 0.5 MeV for the D0(1 constraint),

There are 8+1+1+1+4+4+1 = 20 constraints. This is just enough to cover the variables

and produce a complete solution, a ‘0C’ fit, for the kinematics. However, the solution is

quadratic, meaning that:

1. the solutions are, in general, complex-valued. When a non-zero imaginary part is

required, there is no physically acceptable solution.

2. for most cases with a physically acceptable (real) solution, there are two equally ac-

ceptable solutions due to a “quadratic ambiguity.”

With no extra constraints, one cannot make the ‘usual’ plots showing evidence of a signal,

like ∆E = Erec − EB and Mrec − mB. There are still a number of methods to establish a

signal:

1. use of characteristic shapes in some distributions of kinematic variables, such as cosφ

(φ defined in Figure 2.3),

2. use of angular distributions in the decay of the D�,

3. use of Dalitz plots to search for resonances between the D� and X , when X is not a

single body.

The latter two of these methods are used our analysis of the D�+π−π− final state.

2.3 Physical Constraints and Reconstruction

Eliminating the cases with no physically acceptable (real) solution for the kinematics

is the most powerful tool in rejecting backgrounds. To master this task, the essence of these

cases must be understood.

Given

1. a measured �pπ, hypothesized to be the slow pion,

2. a measured �pXand mX , hypothesized to come from B→D� X ,

3. the constraints to the hypothesized decay sequence B→D� X , D�→D π;
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(a) EB ,

(b) mB,

(c) mD� ,

(d) mD,

(e) mπ;

there are three types of inconsistency with the hypothesized decay sequence. These are as

follows:

1. Given the measured �pX and mX , 4-momentum cannot be conserved in the decay B→
D� X .

2. Given the measured EX and �pπ, 4-momentum cannot be conserved in the decay D�→
D π.

3. Even when 4-momentum can be conserved in both (1) and (2), no D� direction exists

that is consistent with both (1) and (2).

We shall discuss the rejection of these cases and the solution for the kinematics of the decay

sequence in the following sections.

2.3.1 The Decay B→D� X

Here, we are given

1. mB, EB(assumed), and thus |�pB| as well,

2. mD�(assumed),

3. �pXand mX(reconstructed).

By requiring energy conservation we can calculate the energy of the D� given by ED� =

EB −EX = EB −√m2
X + |�pX |2. The most basic constraint is that ED� should exceed mD� :

ED� > mD� . (2.3.1)

This is a weak constraint. If true, one can compute the magnitude of the momentum of the

D� in the lab frame:

|�pD� | =
√

E2
D� − m2

D� . (2.3.2)
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Once |�pD� | has been computed using conservation of energy, we can examine whether the

hypothesized decay can conserve the spacelike components of momentum as well: �pD� =

�pB − �pX . The three momentum vectors must satisfy the triangle inequality: None of the

momenta can be greater than the sum of the other two. The power of this requirement comes

from the relatively small size of |�pB|. A simple way of parameterizing this is to calculate the

cosine of an interior angle of the triangle formed by |�pD� |, |�pB| and −�pX . We shall choose

the angle between −�pX and the D� directions as shown in Figure 2.1.

|p   |

X

D*

-p

possible p

-XD*

D*

θ |p  |B

Figure 2.1: The −X–D� cone angle as described in the text. Notice that because |�pB| � |�pD� |
or |�pX | the D� must be nearly back to back with X for signal.

Since we know the direction of the X system, we have the D� direction constrained

to a cone about the −�pX direction. The cosine of the opening angle of this cone, in terms of

lab quantities is given by

cos θXD� =
m2

B − m2
D� − m2

X

2|�pD� ||�pX | − 1
βD�βX

. (2.3.3)

For cases where the triangle does not close this gives | cos θXD� | > 1. The requirement

for a physical solution, or “physicality,” is then that | cos θXD� | ≤ 1. For signal, typically,

θXD� ≈ 0.1. The lower limit on cos θXD� depends on mX and |�pX |. To account for variability,

it is convenient to work in the B rest frame. With γB = EB/mB, βB =
√

1 − 1/γ2
B, and

using the quantities that describe the D� and the X in the B rest frame,

E�
D� = (m2

B + m2
D� − m2

X)/2mB (2.3.4)

E�
X = (m2

B + m2
X − m2

D�)/2mB (2.3.5)

|�qX | = |�qD� | = λ(m2
B , m2

X , m2
D�)/4m2

B (2.3.6)
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λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc, (2.3.7)

one can reconstruct the decay zenith of the X . This angle, θ�
X , is given by

cos θ�
X = −βB(E�

X − E�
D�)

2|�qX | +
|�pX |2 − |�pD� |2
2γ2

BβBmB|�qX | . (2.3.8)

The physical constraint is then, for all mX and |�pX |,

−1 ≤ cos θ�
X ≤ 1. (2.3.9)

This is effectively a mXdependent requirement on |�pX |. As noted above, one benefits from

the small value of βB, which yields a small range of allowed |�pX |.

2.3.2 The Decay D�→D π

Here, we are given

1. mD� , ED�(calculated in the last section),

2. mD0(assumed),

3. �pπ(reconstructed) and mπ(assumed).

We have the same information as above in the decay B→D� X . Similarly, we have

Eπ =
√

m2
π + |�pπ|2 and

ED0 = EB − EX − Eπ (2.3.10)

ED0 > mD0 (2.3.11)

|�pD0 | =
√

E2
D0 − m2

D0 . (2.3.12)

Having required energy conservation to derive |�pD0 |, we check that 3-momentum can be

conserved in the decay by asking that a triangle formed by the three momenta can close.

The power of this physicality requirement again comes from the relatively small value of �pπ

compared to the other two. We choose the cosine of the angle between the D� and the πslow

directions to parameterize the closure of this triangle as in Figure 2.2. The angle of this cone

in terms of lab quantities is given by

cos θπD� = −m2
D� + m2

π − m2
D0

2|�pD� ||�pπ| +
1

βD�βπ
. (2.3.13)
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Figure 2.2: The πslow–D� cone angle as described in the text. Notice that the D� will be
moving in a similar direction to the πslow for signal.
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This angle is typically larger than the angle θXD� . By knowing the direction of the πslow we

have the D� direction constrained to a second cone of angle θπD� about the πslow. As in the

case of B→D� X , cos θπD� has a lower limit that varies event by event and we account for

this by calculating the decay zenith of the πslow with respect to the D� lab direction in the

D� rest frame. This yields

cos θ�
π = −βD�(E�

π − E�
D0)

2|�qπ| +
|�pπ|2 − |�pD0 |2

2γ2
D�βD�mD� |�qπ| , (2.3.14)

and we require,

−1 ≤ cos θ�
π ≤ 1. (2.3.15)

This EX -dependent requirement on |�pπ| is effective because of the small value of β�
π that

gives |�pπ| in a narrow range.

2.3.3 Solutions for D� Direction

The possible D� momenta must have magnitude defined by Eq. 2.3.2, and must

lie simultaneously on the cone defined in Figure 2.1, and the distinct cone defined in Figure

2.2. The vertices of the cones are both at the origin on momentum space. There are two

possibilities:

1. these cones may not cross (no real solution for �pD�).

2. if they do cross, there will generally be two different but equally viable solutions (a

quadratic ambiguity).

In order to parameterize the crossing of the two cones, both to reject cases where they do

not cross as well as for the reconstruction of the D� direction in the lab, we shall define an

angle φ, as shown in Figure 2.3. We define φ as the azimuthal angle about the −X–D� cone

where the two cones cross. In order that ±φ describe both solutions, φ = 0 is defined so that

it lies in the −X–πslow plane. It will be helpful if we have a method for calculating φ which

continues smoothly when the cones fail to intersect. We can compute phi as

cosφ =
cos θπD� − cos θXD� cos θXπ

sin θXπ sin θXD�

. (2.3.16)

When the two cones do not intersect, |cosφ| > 1. When they do, we have both ±φ as

solutions. The directions of the two D� solutions in the lab can be reconstructed with the

help of three special unit vectors:
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Figure 2.3: The angle φ which defines the possible solutions for the D� direction as described
in the text.
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1. the first is in the direction of −�pX ,

n̂1 ≡ − �pX

|�pX | ;

2. the second is perpendicular to −�pX , and in the plane of −�pX and �pπ, and at φ = 0,

n̂2 ≡ �pπ − (�pπ ·n̂1)n̂1

|�pπ − (�pπ ·n̂1)n̂1| ;

3. the third is perpendicular to the first two, easily formed by taking the cross product of

n̂1 on n̂2,

n̂3 ≡ n̂1 × n̂2.

Then, we get for the momentum of the D� in the lab frame,

�pD� = |�pD� |(cos θXD� n̂1 + sin θXD� [cosφ n̂2 ± sin φ n̂3]).

With the solutions for �pD� , it is possible to reconstruct �pB and �pD0 .

2.4 B−→D�+ π− π− Signal Distributions

With a complete solution for the kinematics of the decay sequence B−→D�+ π− π−,

D�+ → D0 π+ we can reconstruct the decay angular distributions discussed in Chapter 1

(cosθ2,cos θ3,χ) and create a Dalitz plot of the B− → D�+ π− π− three-body phase space.

With no resonances of two like-sign pions, we do not study the Dalitz plot as such: we

only plot the mass of each D�+π− combination. Since M2(π−π−) ∝ cos θ2 we have already

captured the information in this distribution.

Before we can proceed with the data, we must dispose of two more issues. The first

is deciding which D�+π− combination to study. Although both combinations may be plotted,

this makes the statistical interpretation of the data much more complicated. For the general

case of B−→D�+ π− π−, the pions from the B decay are indistinguishable. However, for the

resonant components B−→D0
J π−

1 ,D0
J →D�+ π−

2 , D�+→D0 π+
3 it is important to remember

that the π1 and π2 play different roles: for D1(2420)0, D�
2(2460)0 and most D0

1(j= 1
2 ) decays,

their momentum spectra do not overlap as shown in Figure 2.4. We may use this fact to

distinguish them by considering only the D�+π− combination with the lower mass. This

requirement keeps all signal decays with M(D�+π−) < 3.0 GeV and most of the phase space
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Figure 2.4: The reconstructed spectra of the three pions produced in the decay B− →
D1(2420)0 π−

1 , D1(2420)0 → D�+ π−
2 , D�+ → D0 π+

3 . Note the peaking in pπ2 due to the
angular distribution in the D0

J →D�+ π− decay.
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in the region 3.2 GeV < M(D�+π−) < 4.0 GeV, giving very high acceptance for decays to all

three DJ .

The second issue is deciding which quadratic solution from the reconstruction

method will be used. Since the cones are typically small, the two solutions are similar,

producing only a small smearing in the decay angles and M(D�+π−) when the wrong solu-

tion is used. This smearing is most serious for the M(D�+π−) distributions of the narrow

D1(2420)0 and D�
2(2460)0. We may use the fact that the two quadratic solutions for �pB are

at different angles with respect to the beamline to select one of them. Because B production

at the Υ(4S) has a distribution of dN/d cos θB = sin2 θB with respect to the beamline, we

select the quadratic solution with smaller | cos θB|. This enhances the likelihood of selecting

the right solution by ≈ 60% over selecting one of the two solutions randomly.



Chapter 3

The Experiment and Data

3.1 The CLEO II Experiment

The data used in the analysis of B→DJ π were collected by the the CLEO II experi-

ment, located at the Cornell Electron Storage Ring (CESR) in Ithaca, New York. CESR runs

at center of mass energies near the Υ(4S) providing data suitable for the kinematic recon-

struction described in the Chapter 2. Figure 3.1 shows the cross section for e+e− → hadrons

as a function of center of mass energy near the Υ(4S).

The maximum cross-section for e+e− → Υ(4S) is ≈ 1.07 nb, while the cross-section

for continuum production of quarks is ≈ 3 nb. Data collected at a center of mass energy 50

MeV below the Υ(4S) peak are used to model the continuum background under the Υ(4S).

The CLEO II detector, shown in Figure 3.2, measures both charged and neutral

particles with good resolution and efficiency. Charged particles are measured in a 1.5 Tesla

magnetic field through three nested, cylindrical drift chambers covering 94% of the solid

angle. These chambers are followed by time-of-flight (TOF) counters. Particle identification

is accomplished by combining specific ionization (dE/dx) information from the drift chambers

with TOF information. An electromagnetic calorimeter and muon chambers are used to help

reject electrons and muons as π± candidates.

33
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Figure 3.1: The cross section for e+e− → hadrons near the Υ(4S).

3.1.1 Tracking System

The tracking system consists of three separate drift chambers. The precision track-

ing layer (PTL) is the innermost chamber. This straw tube chamber has six layers with 64

axial wires per layer and provides the best measurements in the r − φ plane. The PTL was

intended to make z measurements using charge sharing information between the readouts at

both ends of the straw tubes. These efforts have been largely unsuccessful due to the short

length of the PTL. The replacement of the PTL with a silicon vertexing detector capable of

making precision measurements in both r − φ and z will be discussed in Part II.

Outside of the PTL is the vertex detector (VD). Once the innermost tracking device,

this ten-layer wire chamber contains 800 axial sense wires to measure trajectories in r − φ

as well as segmented mylar cathodes for measuring z at the inner and outer radii of 8.1 cm

and 16.4. These are the innermost z measurements available in the CLEO detector.

The main drift chamber (DR) is a wire chamber with inner radius of 17.5 cm and

outer radius of 95 cm. There are 40 axial wire layers and eleven layers with stereo angles

of ≈ 5% . The stereo layers, as well as cathodes at the inner and outer radii, give the
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Figure 3.2: A side view of the CLEO II detector.
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best z measurements available in CLEO II. The large range in radius allows for precise

measurements of track curvature giving good momentum resolution. The large path length

also provides a good measurement of specific ionization (dE/dx) which is used to help identify

pions in this analysis.

3.1.2 Time of Flight Counters

At the outside of the drift chamber are time of flight counters consisting of 64

scintillators read out by phototubes. With a time resolution of 150 ps these counters provide

particle identification used in selection of pions. Together with dE/dx information, there is

good separation between pions and kaons with momenta between 150 and 1000 MeV.

3.1.3 Electromagnetic Calorimeter

Inside of the superconducting magnet is an electromagnetic calorimeter consisting of

7800 thallium-doped CsI crystals read out by photodiodes. These crystals measure the energy

of electromagnetically interacting particles, providing excellent identification of electrons by

comparing the energy deposited in the calorimeter with the momentum of the corresponding

track in the tracking system. For electrons one expects the ratio E/P = 1. This information

is helpful in rejecting high momentum primary electrons from B decays as pion candidates.

3.1.4 Muon Detectors

The return yoke of the superconducting magnet serves as the absorber for the muon

identification system. There are three layers of proportional counters at depths of 36, 72 and

108 cm. The total thickness is between seven and ten nuclear interaction lengths depending

on the direction of the track. The muon system is used in this analysis to reject high

momentum primary muons from B decays as pion candidates.

3.2 Event Selection

3.2.1 Data Set

The data used in this analysis were collected from November 1990 to April 1995.

The data are divided into fifteen datasets distinguished by minor changes in detector config-
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uration. These changes lead to shifts in the calibration of the beam energy. As an important

constraint in our reconstruction method, we are sensitive to these changes. Use of the incor-

rect beam energy in the method leads to systematic errors in reconstruction efficiency.

These energy calibration changes are described in terms of shifts in the apparent

B mass which should remain constant. The apparent B mass is calculated by measur-

ing the momentum of B mesons in fully reconstructed hadronic decays and using mB =√
(Ebeam

2 )2 − |�pB|2. When performing our partial reconstruction on data from each dataset,

the energy of the beam is corrected for this miscalibration. Information about these datasets,

including these ‘B mass shifts’ is summarized in Table 3.1.

Table 3.1: A summary of the CLEO II datasets used in this analysis.∫ LonΥ(4S)

∫ LoffΥ(4S) NBB Reconstructed
Dataset Run Period

(pb−1) (pb−1) (thousands) mB(GeV)
4s2 11/90 – 6/91 463 197 501 5.2796
4s3 7/91 – 2/92 436 209 458 5.2802
4s4 4/92 – 5/92 214 101 231 5.2783
4s5 7/92 – 10/92 216 105 231 5.2783
4s6 11/92 – 1/93 233 85 248 5.2779
4s7 3/93 – 7/93 285 177 313 5.2798
4s8 8/93 – 9/93 189 94 203 5.2776
4s9 11/93 – 1/94 230 117 251 5.2790
4sA 1/94 – 2/94 138 54 144 5.2783
4sB 3/94 – 5/94 85 64 87 5.2786
4sC 6/94 – 8/94 115 36 115 5.2803
4sD 9/94 – 10/94 53 50 54 5.2801
4sE 10/94 – 11/94 71 62 66 5.2786
4sF 11/94 – 11/94 89 66 91 5.2793
4sG 1/95 – 4/95 293 192 301 5.2796
Total 11/90 – 4/95 3111 1608 3295 —

3.2.2 Global Event Cuts

Since the B mesons are produced almost at rest, their decay products are, on

average, isotropically distributed throughout the detector. This produces events that tend
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to be ‘spherical’ in shape. Continuum events are more jetlike in shape. In order to select

events that are consistent with the hypothesis of BB production, we choose events that are

spherical using the shape variable R2. This variable is the ratio of the second Fox-Wolfram

moment to the zeroth moment [17] and is useful in discriminating between BB and continuum

events. Only events with R2 < 0.25 are used in this analysis.

We also require that the events we use have no charged tracks with momentum

greater than 2.45 GeV. This requirement eliminates a small amount of continuum background

at the cost of no signal.

3.2.3 Track Selection

The decay sequence B− → D�+ π− π−, D� → D π is reconstructed using only the

three pions. All candidate pions are required to be consistent with production at the pri-

mary event vertex. In addition, we use only tracks with | cos θ| < 0.91 with respect to the

beamline so that they pass through some portion of the central drift chamber. The detector

acceptance for charged tracks below 50 MeV is negligible. We restrict the candidate π3 to

have momentum greater that 50 MeV, discarding a small fraction of π3 from signal events.

Consistency with the pion hypothesis is required for all pion candidates by demand-

ing that the dE/dx and time of flight information are within three standard deviations of

the expected values when the information is available. When unavailable, no cut is made.

We use information for the muon counters and the calorimeter to reduce the number

of muons and electrons which can fake our π1 and π2. These vetoes are only applied when the

information from these detector elements is available and are not applied to π3 candidates.

The efficiency of these loose tracking and pion consistency cuts for the three pions

from B− → D1(2420)0 π−, D1(2420)0 → D�+ π−, D�+ → D0 π+ are 0.75, 0.69, and 0.51

respectively.

3.2.4 Selecting a Three-π Combination

Reconstruction of B− → D�+ π− π− is attempted with all combinations of three

pions that meet the above requirements. This often produces more than one acceptable signal

combination per signal event. To choose a three pion combination for each event, we note

that entries where a random track successfully substitutes for a real π in a signal event are

dominated by fake π2 from the ‘other B.’ The momentum spectrum of these fakes is roughly
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the same as the charged particle spectrum at the Υ(4S): they are mostly low-momentum

tracks (65-300 MeV/c). For this reason, we accept only the three-π combination in an event

with the highest pπ2 . This enhances the likelihood of selecting the signal combination by

50% over selecting a combination at random. Mis-reconstruction of signal due to selection

of the wrong three-π combination constitutes a significant source of background.

3.3 Backgrounds

Typical events at the Υ(4S) have several candidate pions that satisfy all of our

pion selection cuts. The leads to tens or hundreds of candidate three-π combinations for

each event. Rejection of this large combinatoric background relies upon the impositions of

“physicality” inherent in the reconstruction method. These requirements enforce a specific

kinematic relationship among the candidate tracks: the three charged tracks must have

momenta and angles that are physically possible for the decay chain we seek. For some

background sources, the kinematic relationship is achieved by accident: we call these sources

‘random.’ For others, the kinematic relationship is closely approximated by a decay that

is similar to B− → D�+ π− π−: we call these sources ‘semi-correlated feedthrough.’ The

expected contributions from these backgrounds are shown along with the reconstructed data

in Figure 3.3. The top two backgrounds in the legend of that figure are ‘random,’ and the

bottom three are ‘semi-correlated feedthrough’ of various types.

3.3.1 Random Combinatoric Background

Random background is produced by three-π combinations of random tracks in the

detector. These tracks are successfully reconstructed to create the candidate decay chain but

have no special kinematic relationship to one another. The distribution of this background is

dictated by the momentum spectrum of candidate pions and their distribution in the detector,

and tends to be smooth in M(D�+π−), compared to the distributions for our resonant signal

modes.

The background from continuum is of this type since the constraint for B→D� X

has no meaning for these events. With samples of data collected ‘off-resonance’ it is a

simple matter to model the contribution from continuum. BB events also contain random

background. However, BB events also contain a background of a second type, which we refer
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Figure 3.3: The distribution of backgrounds in our observables. The upper plot shows the
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to as ‘semi-correlated feedthroughs.’

3.3.2 Semi-correlated Feedthroughs

Some BB decays mimic the kinematics of the signal closely enough to enter the

signal plots with relatively large efficiency. Investigation of the BB background populating

the signal plot reveals a pattern: modes that are kinematically similar to the signals have

higher feedthrough rates and peak more strongly in M(D�+π−).

Based on this observation, Monte Carlo studies of nineteen potential background

modes was undertaken. The efficiency for events from these modes to enter into our signal

plots is shown in Table 3.2.

The non-signal modes which have high efficiency to enter our signal plot are of the

type B→D�Xπ, D�→Dπslow (here, and in further discussion, we denote the π3 of Fig. 1.6

by πslow) where X consists of either zero or one light particle. In these events, the B decay

provides a pion in the correct momentum region for a π1 candidate, while the D� decay

provides a slow pion traveling in the proper direction for a πslow candidate. The fake π2 is

typically from the decay of the other B in the event. Only the π1 and πslow are ‘correlated,’

while the π2 is ‘random.’ This is the same mechanism responsible for multiple entries in

signal events.

Since these random π2 have the momentum distribution of charged tracks at the

Υ(4S), the largest feedthrough efficiencies are for modes where the reconstruction requires

a low momentum π2 candidate. These modes are characterized by having a fast π1 (≈ 2

GeV/c). Modes where this π1 peaks strongly in momentum also peak in our M(D�+π−)

distribution.

There are four BB decay modes that are of particular concern due to their tendency

to peak near the signal region in M(D�+π−). These are

1. mis-reconstructed B−→D0
J π−, D0

J →D�+ π−, D�+→D0 π+;

2. B0→D+
J π−, D+

J →D�+ π0, D�+→D0 π+;

3. B0→D�+ π−, D�+→D0 π+;

4. B0→D�+ ρ−, D�+→D0 π+.
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Table 3.2: Background Efficiency. The typical overall efficiency (including acceptance) for
the signal modes and off-resonant is given first, followed by the four most prominent ‘semi-
correlated feedthroughs,’ which tend to peak in M(D�+π−). The next fifteen feedthroughs
tend not to peak in M(D�+π−), and are similar to the random background that is contributed
by the B decay modes that are not entered in this table (so-called B-generic modes).

Mode Efficiency
Reference modes

B−→D0
J π−(signal) ≈ 0.15

Off-resonant 2.1 × 10−4

Backgrounds peaking in M(D�+π−)
B0→D+

J π− ≈ 0.09
B−→D0

J π−(mis-reconstructed) ≈ 0.05
B0→D�+ π− 0.013
B0→D�+ ρ− 0.0087

Flat backgrounds
B0→D�+ π− π0 2.4 × 10−3

B−→D�+ π− π−(mis-reconstructed) 1.9 × 10−3

B0 → D+
J π−π0 1.9 × 10−3

B0 → D+
J ρ− 1.1 × 10−3

B0 → D+π− 1.1 × 10−3

B0 → D�+πππ0 8.4 × 10−4

B0 → D�+π−π−π+ 8.2 × 10−4

B0 → D�+e−νe 8.0 × 10−4

B0 → D+ρ− 6.2 × 10−4

B0 → D�µ−νµ 4.9 × 10−4

B0 → D+π−π− 4.0 × 10−4

B0 → D+ρ0π− 3.5 × 10−4

B0 → D+π−π−π+ 3.1 × 10−4

B0 → D+e−νe 7.3 × 10−5

B0 → D+µ−νµ 6.1 × 10−5
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All four have relatively high feedthrough rates and peak somewhat in our signal

plots as shown in Figure 3.3. Because of this, these modes are removed from the sample of

BB generic Monte Carlo and separate samples are generated to model their contribution to

the fit more carefully.
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Chapter 4

Fit Technique

4.1 Introduction

We must fit the four-dimensional distribution of the data in the observables

{M(D�+π−), cos θ2, cos θ3, χ} in order to perform the partial-wave analysis of the decay

sequence B− → D0
J π−,D0

J → D�+ π−, D� → D π and measure the B− → D0
J π− branch-

ing ratios. The essential ingredient in this fit is a smooth model for the four-dimensional

distribution that includes the acceptance and smearing inherent in the experiment and re-

construction method. We use a method of Monte Carlo interpolation to create a model of

the data and perform our parameter estimation with an unbinned maximum-likelihood fit.

Unbinned maximum-likelihood fits have become a popular method of estimating the

parameters that describe large multi-dimensional datasets. Using a sample of Monte Carlo

to derive the probability distribution function allows one to capture all of the acceptance

and smearing effects in the simulation. While such fits have become common in estimating

the parameters that describe the shape of such distributions, some new problems must be

addressed in order to properly extract branching ratios from these fits. These problems

include proper treatment of the error on the total yield and the extraction of efficiencies

needed to correct the yields. In addition, determination of the confidence level of such fits is

always difficult.

The following sections describe the mathematical foundations of unbinned max-

imum-likelihood along with the technical details of performing these fits using Monte Carlo

45
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samples to estimate the probability distribution function. We will present solutions to the

problems of extracting proper yields and efficiencies, as well as a simple method for measuring

the goodness-of-fit. Finally, we discuss the details of the method used to perform our four-

dimensional fit to the data and the results of tests that confirm our ability to properly

estimate the parameters that describe our data sample.

4.2 Unbinned Likelihood

4.2.1 The Parent Distribution

In any experiment there are some number of observables, n, containing information

about the phenomena under investigation. We may write that set as a vector, �x, in a space

of dimension n. For a sample of N data from the experiment, we have a set of vectors

{�xi}; i = 1, N .

The function that describes the frequency of occurrence of data at �x is the proba-

bility distribution function (pdf), p(�x,�a0), where �a0 is a set of m parameters that describe

the shape of the parent distribution in the space of observables.

For the purpose of estimating �a0 with our fit, we define a more general vector of

parameters, �a which allows us to vary the shape of the pdf in the vicinity of the true shape.

In the ‘classical’ maximum-likelihood technique, the pdf is assumed to be normalized

for all �a: ∫
V

dnxp(�x,�a) = 1, ∀�a. (4.2.1)

A technique known as ‘extended maximum-likelihood’ [18] can be used to avoid

performing the normalization integral of p(�x,�a) and is more appropriate to the case where

the actual number of events is not known and yields are being measured. The ‘extended pdf ’

is given by

P (�x, �A) = Np(�x,�a), (4.2.2)

so that ∫
V

dnxP (�x, �A) = N . (4.2.3)

Notice that the normalization has been absorbed into the list of parameters, �A:

�A = {N ,�a}. (4.2.4)
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4.2.2 The Likelihood Function

To derive the extended likelihood, consider drawing N events according to p(�x,�a0).

For a particular ‘draw’ of events, one gets a list of the N n-component vectors �x, labeled by

the index i in the set {�xi}, i = 1, N .

In each bin, ∆nx, of the n-dimensional space of independent variables, one will find

some number of the N events from the draw. Imagine averaging over many ‘draws’ of N

events, and keeping track of the mean number of events, µ(�x), in the bin ∆nx located at �x:

µ(�x) = P (�x, �A0)∆nx. (4.2.5)

The unbinned limit corresponds to considering the limit ∆nx → dnx so that all

bins contain either zero or one event. From Poisson statistics,

Probability of Zero Events in bin = e−µ(
x) = e−dnxP (
x, 
A0)

Probability of One Event in bin = µ(�x)e−µ(
x) = dnxP (�x, �A0)e−dnxP (
x, 
A0).

(4.2.6)

For a given draw of N events, the extended likelihood LN of the draw is proportional

to the product of the probabilities for all the bins with zero events in them, and of the

probabilities for all the bins with one event in them:

LN ∝

 ∏

all bins

e−dnxP (
x, 
A0)



[

N∏
i=1

dnxP (�xi, �A0)

]
. (4.2.7)

The first product in square brackets is independent of the particular set {�xi}, i =

1, N that is drawn and contributes a factor of e−N , which is retained only for future use

in the maximum-likelihood fit for �A. The second term does depend on the events drawn.

Therefore, variations in LN all come from the second term. It is the real focus of likelihood

analysis.

To dispose of the differential factor in the second term, one argues that the product

of all dnx is a normalization factor that is independent of either the parameters �a or of the

particular draw; one can re-normalize it away in the precise definition of LN .

Taking logarithms, we have

lnLN =
N∑

i=1

ln P (�xi, �A0) −N . (4.2.8)
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The first term above is similar in form to what appears in the ‘classical’ expression for the

log-likelihood:

lnLN =
N∑

i=1

ln p(�xi,�a0). (4.2.9)

The inclusion of the second term, N , is what is implied by the phrase ‘extended’ log-

likelihood: the ‘classical’ definition of the likelihood is ‘extended’ to take the overall nor-

malization into account. It turns out that maximization of the extended likelihood with

respect to �A will result in N = N . In essence, one employs the maximization program (such

as Minuit) to do the numerical analysis of the normalization.

4.2.3 Goodness-of-fit

Consider the distribution of lnLN , for many ‘draws’ of N data points, each draw

described by a set of vectors {�xi}, i = 1, N . In the equation

lnLN =
N∑

i=1

ln P (�xi, �A0) −N (4.2.10)

the second term, N , is independent of the particular draw of data points. The first term

provides all the variation.

The mean of the extended log-likelihood, denoted 〈lnLN 〉, can be found by by

convoluting lnP (�x, �A0) N times:

〈lnLN 〉 = N〈ln P (�x, �A0)〉 − N
= N

N
∫

V
dnxP (�x, �A0) ln P (�x, �A0) −N .

(4.2.11)

As N → ∞, the central limit theorem implies that lnLN will be distributed about

〈lnLN 〉 in a Gaussian distribution, with variance

Var(lnLN ) = N〈(∆ ln P (�x, �A0))2〉, (4.2.12)

where

〈(∆ ln P (�x, �A0))2〉 = 1
N
{∫

V
dnxP (�x, �A0)(lnP (�x, �A0) − 〈ln P (�x, �A0)〉)2

}
= 1

N
[∫

V dnxP (�x, �A0)(ln P (�x, �A0))2
]
− 〈ln P (�x, �A0)〉2.

(4.2.13)

This result can be used to form an approximate goodness-of-fit test, when m << N :

one replaces �A0 with the best fit parameters �A, and computes log-likelihood. Then, one
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considers the probability that the Gaussian described above is consistent with the computed

log-likelihood. We may then compute the confidence level of a fit that has a maximized

log-likelihood of lnLmax as

C.L. =
1

2
√

2π

∫ x0

−∞
e

−x2
2 dx, (4.2.14)

where

x0 =
lnLmax − 〈lnL〉

σ(lnL)
. (4.2.15)

When the number of parameters is not negligible, the resulting fit pulls alter the

expected distribution of likelihood. We may account for this change in the number of degrees-

of-freedom by replacement of N in the above formulae with the factor N − m.

4.3 Performing Unbinned Maximum-likelihood Fits

4.3.1 The Probability Distribution

The first step in applying the above prescription is the estimation of the pdf at

each datapoint, p(�xi,�a). In the simplest case one has a physically motivated analytic func-

tion for p(�x,�a) for which the normalization can be easily calculated. In practice it is much

more common to have smearing and acceptance effects which cause the observed probability

distribution p(�̃x,�a), a function of the smeared measured variables �̃x, to differ from the un-

derlying physical distribution ρ(�x,�a). The relationship between these two distributions can

be expressed as

p(�̃x,�a) =
∫

A(�̃x, �x)S(�̃x, �x)ρ(�x,�a)dx, (4.3.1)

where A(�̃x, �x) is the acceptance function and S(�̃x, �x) is the smearing function. Naturally,

it is this function of the reconstructed, smeared observables that we need for our likelihood

calculation.

In some cases it may be possible to parameterize the smearing and acceptance

functions and calculate p(�̃x,�a) analytically. One would typically use a Monte Carlo simulation

of the the experiment to find these functions. This can be very difficult when there are a

large number of correlated observables.

Fortunately, it is possible to use the Monte Carlo data directly to evaluate p(�̃x,�a) at

every datapoint [19]. To do this we create a volume, Vi, centered about the i− th datapoint,
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�̃xi, and count the number of Monte Carlo events, NVi , inside that volume. The probability

that the datapoint was drawn from the same parent as the Monte Carlo is then

p( �̃xi,�a) ∝

NVi∑
j

1

Vi
=

NVi

Vi
. (4.3.2)

To enforce the normalization condition for ‘classical’ log-likelihood,∫
V

dnxp(�̃x,�a) = 1, ∀�a, (4.3.3)

we can define

p( �̃xi,�a) =
1

NTOT

NVi

Vi
, (4.3.4)

where NTOT is the total number of Monte Carlo events in the sample. Multiplication by a

factor of N gives us the extended probability, P ( �̃xi, �A).

If there are several samples of Monte Carlo representing Ncomp different hypothe-

sized components of the data we have for the extended probability at the i − th datapoint

P ( �̃xi, �A) =
Ncomp∑
k=1

Nkpk( �̃xi, �ak), (4.3.5)

where the sum is over the various components and the probability distribution for each

component at the i − th datapoint is

pk( �̃xi, �ak) =
1

NTOTk

NVik

Vik
. (4.3.6)

Note that the sizes and shapes of the volumes Vik may be chosen differently for each datapoint

and sample of Monte Carlo. Our only concern is proper evaluation of the density.

4.3.2 Estimation of Shape Parameters

The above prescription is complete if we are only extracting the yield, N , of each

Monte Carlo component. However, we would often like to fit other parameters, �a, that

describe the shape of some component of the data for an estimate of their ‘true’ values, �a0.

Examples are the mass and width of a resonance, or the decay angular distributions in a

decay sequence. In this case we must model a continuum of hypotheses in order to extract

the relevant parameters from the fit. When one has an analytic function for p(�̃x,�a) this is

simple. When Monte Carlo data is used to generate p( �̃xi,�a) this is more difficult.
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What we need is Monte Carlo for each hypothesized shape of p(�̃x,�a) required in the

process of minimizing the likelihood function. Clearly this is unrealistic, but it is possible

to weight the events in a Monte Carlo sample to simulate all possible hypotheses [19]. In

general, we need p(�̃x,�a) for each possible, physically meaningful ρ(�x,�a). For this we may

take a set of Monte Carlo events generated according to ρ(�x,�a) and reweight them with the

function

W (�x,�a,�a ′) =
ρ(�x,�a ′)
ρ(�x,�a)

, (4.3.7)

where �a are the parameters used to generate the Monte Carlo and �a ′ are the parameters we

would like to ‘simulate’. For the observed probability distribution, we have

p(�̃x,�a ′) ∝

NV∑
j

W (�xj ,�a,�a ′)

V
. (4.3.8)

The final issue is normalization. The properly normalized pdf for each sample at

the i − th datapoint is

p( �̃xi,�a) =
1

NT OT∑
j

W (�xj ,�a,�a ′)

NVi∑
j

W (�xj ,�a,�a ′)

Vi
=

1
WTOT

WVi

Vi
, (4.3.9)

where WVi is the total weight inside the volume Vi and WTOT is the total weight of all Monte

Carlo events. Note that this is just a generalization of the earlier case where the weight of

each Monte Carlo event was unity.

It is important to remember that the weight is a function of the generated, physically

meaningful location of each point in the space, �x and not the observed location, �̃x. This

requires us to keep track of both the generated location and the observed location of each

Monte Carlo event.

4.3.3 Calculation of Efficiencies

To calculate the number of events produced by our experiment, the efficiency for

each hypothesized sample must be calculated. When the only parameter for a sample in the

fit is the yield this is quite simple. Using our Monte Carlo we may take the efficiency as

ε = Nobserved/Ngenerated. (4.3.10)
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However, when we weight some generic Monte Carlo sample with a function as

described in the previous section, we must remember that the efficiency may be a function

of the parameters:

ε = ε(�a ′). (4.3.11)

We must be prepared to calculate the efficiency for any set of parameters, which is given by

ε =

Npass∑
j

W (�xj ,�a,�a ′)

NT OT∑
j

W (�xj ,�a,�a ′)
, (4.3.12)

where NTOT is the number of physical events generated at some �x, regardless of whether

they were ‘observed’ and Npass is the number of events actually reconstructed and observed

at some �̃x. Note that performing this calculation means keeping track of �x for every Monte

Carlo event, regardless of whether our experiment would have observed that event or not. In

experiments where the efficiency is very low, this may create the need to handle very large

data structures. Fortunately this step is not neccessary to the minimization procedure and

need only be performed once for each fit.

4.3.4 Calculating Goodness-of-fit

In section 2.3 we described a method for estimating goodness-of-fit for unbinned

maximum likelihood. This method requires integrating functions of the pdf over the space

of observables. When using Monte Carlo directly, the pdf is not easily integrable because

we only evaluate it at each datapoint, p(�̃x,�a). Even when it is possible to parameterize the

pdf with an analytic function, that function is rarely simple enough to perform the integrals

that we need. In most cases, it is necessary to use a Monte Carlo integration technique.

This technique involves sampling the pdf at a large number (Nthrown >> N) of

random points in the allowed region for our observables, Vtot. By calculating p(�̃x,�a) at each

point, we may integrate any function of the pdf using

∫
V

dnxF (pdf) =
Vtot

Nthrown

Nthrown∑
i

F (pdf). (4.3.13)

Specifically, we need to evaluate

〈lnLN 〉 = N〈ln P (�x, �A0)〉 − N (4.3.14)
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σ(lnLN ) =
√

N
[
〈(ln P (�x, �A0))2〉 − 〈ln P (�x, �A0)〉2

]
, (4.3.15)

where

〈ln P (�x, �A0)〉 =
1
N

Nthrown∑
i

P (�xi, �A) ln P (�xi, �A) (4.3.16)

〈(ln P (�x, �A0))2〉 =
1
N

Nthrown∑
i

P (�xi, �A)(lnP (�xi, �A))2. (4.3.17)

The time needed to evaluate the pdf at such a large number of points will be the limiting

factor in the speed of the fitter. While it is necessary that Nthrown >> N , clever sam-

pling techniques can reduce the number of points required for a given precision by orders of

magnitude.

If truly random points are used, the integral converges as 1√
Nsamp

. There are two

methods we use to improve upon this. First, there are a number of sampling schemes that

use ‘quasi-random’ sequences. One of these, Sobel’s sequence, converges almost as rapidly as
1

Nthrown
, and is easily generalized to any number of dimensions [20]. Second, if we can place

our sampling points according to the value of the function we are integrating, we achieve

greater precision with fewer points. Since the goal is to sample the pdf better than it is

sampled by the data, we throw our integration points according to the density of data in our

space of observables. By combining these two schemes, we are able to evaluate the integral

with high precision in a reasonable time.

4.3.5 Systematic Errors

There are two sources of systematic error associated with the use of Monte Carlo

to model the pdf :

1. limited Monte Carlo statistics in the volume about each datapoint will lead to large

statistical errors in the fit shape.

2. nonlinearity in p(�̃x,�a) over the volume about each datapoint introduces systematic

errors in p(�̃x,�a).

The former is a matter of simple statistics. A lack of events to effectively sample

the pdf produces a poor estimate of its true value. The latter is due to the fact that our
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prescription for calculating the probability density at each datapoint,

pi(�̃x,�a) =
1

NTOT

NVi

Vi
, (4.3.18)

assumes that the value at the datapoint is the same as the average value of p(�̃x,�a) in the

vicinity of that point. In the case that the datapoint is at the center of the volume, this is

the same as assuming that even terms in the distribution of Monte Carlo points are small in

the range of Vi.

The only way to reduce the statistical error on the pdf is by increasing the number

of points in the sampling volumes. While one can simply generate more Monte Carlo, the

resources for this may be prohibitive. In other cases where sidebands or off-resonant data

can be used instead of Monte Carlo, the available data must suffice. In these situations we

must increase the size of our sampling volumes, Vi. Unfortunately, this increases the non-

linearities across the box, producing larger systematic shifts in the pdf . These shifts affect

the fit in two ways:

• systematic over or underestimation of p(�x,�a) can violate the normalization condition∫
V

dnxp(�̃x,�a) = 1, biasing fits with more than one component.

• errors in the shape of p(�x,�a) can produce incorrect fit results.

In general, the first of these is the more serious condition. Methods of correcting for these

problems will be discussed in the following sections.

4.3.6 Corrections to p(�x,�a)

Ensuring Proper Normalization of p(�x,�a)

Proper normalization of the pdf for each hypothesized component of the data is

critical to the extraction of accurate fit parameters. An error in the normalization upsets

the balance between the first and second terms of equation for that component. As a result,

one component will be favored over another in maximizing the likelihood.

Previously, we wrote the probability density as derived from Monte Carlo as

p(�̃x,�a) =
1

WTOT

WV

V
. (4.3.19)
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If we were to use as the p(�̃x,�a) value of the probability throughout volume V , as in a binned

fit, then the proper normalization of p(�̃x,�a),

∫
V

dnxp(�̃x,�a) = 1, ∀�a, (4.3.20)

is guaranteed. However, that is not what our unbinned prescription calls for: the value

of p(�̃x,�a) at each datapoint is taken in the same location in each volume, typically in the

center. Because of this, the method may introduce an error in the normalization if p(�̃x,�a) is

systematically over or underestimated. This can easily occur in the case where large volumes

are required to sample the Monte Carlo shape.

We solve this problem by calculating the normalization integral via Monte Carlo

integration. We then take this ‘brute force’ normalization and renormalize p(�̃x,�a) with it.

This can be done with same numerical integration method as we use for calculating the

integrals for our goodness-of-fit test,

Norm =
∫

V

dnxp(�̃x,�a)

=
Vtot

Nthrown

Nthrown∑
i

.p(�̃x,�a)

The normalization calculated in this way may differ from unity due to the systematic effects

discussed above. We may then renormalize p(�̃x,�a) by taking

p(�̃x,�a)renormalized =
1

Norm
p(�̃x,�a). (4.3.21)

Projecting onto Orthogonal Polynomials

The simplest method of calculating our pdf to higher order is expansion of pi(�̃x,�a)

about each datapoint in sum of multi-dimensional Legendre polynomials:

pi(�̃x,�a) =
∑

i,j,k...Ndim

aijk...Ndim
Pijk...Ndim

=
∑

i,j,k...Ndim

aijk...Ndim

2ni+1
2 Pi

2nj+1
2 Pj

2nk+1
2 Pk...

2nNdim
+1

2 PNdim
,

(4.3.22)

where the Pn(x) are the one-dimensional Legendre polynomials,
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n Pn(x)
0 1
1 x
2 1

2 (3x2 − 1)
...

...

and the coefficients are calculated via projection of the Monte Carlo:

aijk...Ndim
=
∫

V

dnxPijk...Ndim

NV∑
1

δ( �̃xi − xcenter)Wi(�x,�a,�a ′) (4.3.23)

=
NV∑
1

Pijk...Ndim
( �̃xi − xcenter)Wi(�x,�a,�a ′). (4.3.24)

Though this method may be used to any order, it has some shortcomings. En-

largement of the sampling volumes increases the number Monte Carlo points in each volume,

but more are required to produce stable solutions for the aijk...Ndim
. Fluctuations in these

solutions can cause the pi(�̃x,�a) calculated in this way to be negative. This is especially true

near the edges of the space. There, p(�x,�a) must be evaluated at the edges of our sampling

volumes where the Legendre expansion is not convergent.

To handle the above problems we need a way to deal with negative probability

densities, especially near the edges of our multi-dimensional fit space. A small number of

problematic datapoints may simply be removed from our fit. If there are large regions of

the multi-dimensional space, e.g. near the edges, where pi(�̃x,�a) is computed to be negative,

cutting the data in these regions can be a useful approach.

In achieving stability, it is important to calculate only those corrections that appear

to be significant using goodness-of-fit as a guide. Because of the added complexity, it is best

to avoid making any corrections at all when possible. In many cases, the above method

provides only a modest improvement over the linear approximation with carefully tuned

volumes. For our fits to the data, we model the pdf to linear order, and cut away the edges

of the fit space to ensure stability, as described in the following section.
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4.4 Fitting the Data for B−→D�+ π− π−

4.4.1 Monte Carlo Samples

Large data samples are required to model the probability density function (pdf) in

four dimensions for the fit. The contributions to the fit are from

• B−→D0
J π− signal,

• B−→D�+ π− π− signal,

• mis-reconstructed B−→D0
J π−,

• B0→D+
J π−,

• B0→D�+ π−,

• B0→D�+ ρ−,

• other BB generic decays,

• continuum.

The samples used to model these fit components are summarized in Table 4.1. The B− →
Table 4.1: The samples used to model the pdf of each component in the fit. The tagger
was used to remove contributions from the exclusive BB modes from the BB generic Monte
Carlo sample.

Component Sample type Amount
B−→D0

J π− and B−→D�+ π− π− D�+π−π− MC 3,000,000 events
B0→D+

J π− D�+π−π0 MC 1,000,000 events
B0→D�+ π− B0→D�+ π− MC 400,000 events
B0→D�+ ρ− B0→D�+ ρ− MC 800,000 events
Other BB background BB generic MC ≈ 2 × 107 events
Continuum background Off Υ(4S) data 1.6 fb−1

D�+ π− π− Monte Carlo was used for modeling both the resonant and non-resonant signal.

This sample was generated with a flat distribution in Dalitz space and each of the angular

distributions, multiplied by a factor producing more Monte Carlo in the M(D�+π−) region
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where we know the DJ lie. Monte Carlo for modeling the contributions from B0 →D+
J π−

feedthroughs are generated with the same distribution.

The shapes of the B− →D0
J π− and B0 →D+

J π− signals that contribute to back-

ground from mis-reconstruction are varied in unison with the changes in the resonant sig-

nal shape. The resonant signal shape is assumed to be the same for B− → D0
J π− and

B0→D+
J π−. The yields of these backgrounds are allowed to float in the fit.

Because the sample of off-resonant data has limited statistics, an additional trick

is used. Both quadratic solutions from the partial reconstruction are used to model the pdf .

Since the constraints of the reconstruction have no meaning without a real B decay, there is

no difference between the distributions of the two solutions for continuum background. Since

the two solutions do not typically fall inside the same volume used to estimate the pdf , the

statistical significance of the sample in each volume is enhanced.

The contribution from continuum was allowed to float within the gaussian errors

due to reconstruction efficiency for off-resonant events. The contributions from B0→D�+ π−

and B0 →D�+ ρ− were allowed to float within the error due to their branching ratios and

the reconstruction efficiencies for those samples. The expected yields from these sources are

shown in Table 4.2. The contribution from other BB decays was allowed to float without

constraint.

Table 4.2: The expected yields and errors for known backgrounds in the data sample. These
yields were allowed to float within their gaussian errors for the fit.

Component Expected Yield
Continuum background 4007± 281
B0→D�+ π− 234 ± 19
B0→D�+ ρ− 614 ± 307

4.4.2 Tests of Fit for B−→D�+ π− π− Decays

The fit technique was tested on eight samples of simulated data. Data for the

expected background were drawn from the Monte Carlo samples described in the previous

section. Continuum Monte Carlo was used to draw samples representing the off-resonant

data. Eight signal samples were generated with different values for each of the parameters.
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The set of parameters for each test was randomly selected from predetermined pools for each

parameter.

All components of the fit are modeled to linear order by expansion in Legendre

polynomials. This eliminates effects at the edges of the four-dimensional space of M(D�+π−)

and the decay angles that are inherent in our Monte-Carlo based technique for estimation

of the pdf . Similar effects at the edges of the Dalitz space were found to cause systematic

shifts during testing with Monte Carlo samples. Cutting the data at cosθDalitz < 0.99 in all

D�+π−π− Dalitz angles eliminates these errors. This cut is 96% efficient for signal and 89%

efficient for background.

Figures 4.1 and 4.2 show plots of the reconstructed versus generated value for each

parameter. No significant systematic shifts are apparent in these results. These tests also

revealed that our fit is not sensitive to the strong phase between the resonant and non-

resonant contributions to D�+π−π−. This phase was removed from our parameterization of

the fit function for the results of Figures 4.1 and 4.2 and for our fit to the data. The Monte

Carlo tests show that neglecting this phase does not introduce any significant systematic

shifts in the parameter estimates.
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Figure 4.1: Reconstructed versus generated yields for eight Monte Carlo tests with different
signal distributions. The dashed line represents the perfect fit.
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Figure 4.2: Reconstructed versus generated parameters for eight Monte Carlo tests with
different signal distributions. The dashed line represents the perfect fit. Missing points
correspond to cases where a non-existent resonant yield leads to large errors or no clear
minimum for that parameter.
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Chapter 5

Results

The fit to the data was performed exactly as described for the Monte Carlo tests

described in Chapter 4. The results of the four-dimensional fit to the data are summarized

in Tables 5.1 and 5.2. For this fit, the mass and width of the D0
1(j= 1

2 ) are allowed to float,

while the masses and widths of the D1(2420)0 and D�
2(2460)0 are fixed to their known values

from Table 1.1 [2].

Table 5.1: Results of the fit to the three body phase space for B− →D�+ π− π− using 3.1
fb−1 of data collected at the Υ(4S). The yields of all components with errors are shown.
There are 9014 reconstructed events in the data sample.

Component Yield
B−→D0

J π− signal 631.5 ± 80
B−→D�+ π− π− non-res signal 199 ± 74
Continuum background 4025± 157
B0→D�+ π− 222 ± 17
B0→D�+ ρ− 714 ± 77
mis-reconstructed B−→D0

J π− 308 ± 78
B0→D+

J π− 470 ± 96
other BB background 2448± 151
Total 9018± 95

The net (integrated) interference among the resonances is found to be destructive.

63
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Table 5.2: Details of the fit to the data for the signal distribution. Yields in the resonant sub-
channels are corrected for their relative efficiencies. The statistical significance with which
each parameter is determined to have a non-trivial value is also listed. The significance for
δ1 is measured relative to both 0 and (π), while that for δ2 is measured relative to both 0
and (π/2), as described in the text.

Central Statistical Significance
Parameter

value error
(√

2(∆ lnL)
)

D�π−π− Yields
B−→D1(2420)0 π− 223.5 +58

−44 4.7 σ

B−→D0
1(j= 1

2 )π− 344.4 ±63 6.1 σ

B−→D�
2(2460)0 π− 100.1 ±27 5.0 σ

B−→D�+ π− π− non-res 199 ±74 2.9 σ

D0
1(j= 1

2 ) lineshape
MD0

1(j=1
2 ) (GeV) 2.461 +0.041

−0.034 —
ΓD0

1(j=1
2 ) (GeV) 0.290 +0.101

−0.079 —

Mixing and interference
β 0.368 ±0.100 2.9 σ

φ -0.244 ±0.42 < 1 σ

δ1 2.62 ±0.30 4.8(1.7)σ

δ2 2.10 ±0.34 2.3(1.6)σ



65

The sum of the individual product branching ratios would yield 1.058 ± 0.063 times the

observed total resonant contribution to the D�+π−π− final state.

The statistical significance of the signal yields, mixing and interference are also

shown in Table 5.2. The statistical significance of each fit parameter is
√

2∆ lnL, where the

change in log-likelihood is obtained by performing a fit with that parameter fixed to zero

or another trivial value. Because the estimated value of δ1 is close to π where it has no

imaginary part, the significance of δ1 is determined relative to both 0 and π. Similarly, δ2 is

found to be close to π/2 where the imaginary part cancels the i in the angular amplitude of

the 2+ decay. The significance of δ2 is listed relative to both 0 and π/2.

With the help of Eqs. 21-23 and the covariance matrix from the fit, we may convert

our measurements of MD0
1(j=1

2 ), ΓD0
1(j=1

2 ), β and φ into measurements of ∆M , ∆Γ, M12 and

Γ12. The results for the mixing parameters are shown in Table 5.3.

Table 5.3: Estimates of the mixing parameters for the 1+ DJ . The errors on these values
are computed using the covariance matrix from the fit.

Mixing parameter Estimate (MeV)
∆M −9.6 ± 34.3
∆Γ −190 ± 76
M12 22.2 ± 21.2
Γ12 98.9 ± 33.7

The fit was also performed with the masses and widths of the D1(2420)0 and

D�
2(2460)0 floating within the errors on their known values [2]. The resulting estimates

of these parameters were all within one standard deviation of the known values. Finally,

these constraints on the lineshapes were removed entirely. This yields a consistent fit as well,

but with much larger errors.

A projection of the fit onto the M(D�+π−) axis is shown in Figure 5.1. The

demonstration that the the resonant subcomponents of the fit are present in the data is

challenging because of substantial overlaps of the angular functions. To attempt a meaningful

comparison, we have made projections onto the M(D�+π−) axis by weighting the events,

where the weights are determined by the decay angles alone. If, when we weight the events

based only on the expected decay angular distribution for the 2+ resonance, we observe a

peak with the characteristics of the D�
2(2460)0, then we have meaningfully tested our fit.
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Figure 5.1: A projection of the four-dimensional fit onto the M(D�+π−) axis. The points
with errors are the data. The expected background and the fit are shown, along with the
fractions of D1(2420)0 (light gray), D�

2(2460)0 (dark gray) and D0
1(j = 1

2 ) (cross-hatched),
where interference has been neglected.
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To make these projections, four weights are constructed based on the expected

angular distributions of the various partial waves and the background. These weights are

normalized to have the same maximum value and are proportional to

w1d ∝ |a1d|2 (5.0.1)

w1s ∝ |a1s|2 (5.0.2)

w2 ∝ |a2|2 (5.0.3)

wback ∝ f(cos θ2, cos θ3, χ), (5.0.4)

where the a are the angular amplitudes of section 1.2 and wback is a background weight

constructed by fitting the one-dimensional distributions of the backgrounds in the signal

region (2.4 GeV < M(D�+π−) < 2.9 GeV) to analytic functions. From these we construct

four more weights that emphasize the S2/(S + B) of each partial wave:

W1d =
w2

1d

wtot
(5.0.5)

W1s =
w2

1s

wtot
(5.0.6)

W2 =
w2

2

wtot
(5.0.7)

Wback =
w2

back

wtot
, (5.0.8)

where

wtot = w1d + w1s + w2 + wback. (5.0.9)

As defined, these weights are not sensitive to the level of any resonant sub-component that

contributes to the fit.

Using these weights, we make M(D�+π) plots where events are weighted by the

1+ d-wave, 1+ s-wave, 2+ and background angular information. These plots are displayed

in Figure 5.2. The data show the enhancements expected due to the three resonances.

Subtracting the backgrounds from these plots, as in Figure 5.3, shows the differences between

the data for the three signal weights more clearly.

The confidence level of the fit was evaluated using the method described in CBX

98-61. The expected distribution lnLmax is gaussian, and is given specifically by:

exp
(−(lnLmax − 43841.73)2

2 × 68.302

)
. (5.0.10)
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Figure 5.2: Weighted projections of the four-dimensional fit onto the M(D�+π−) axis. Each
event is weighted according to the expected angular distributions for the three resonant
partial waves and the background. The points with errors are the data. The expected
background and the fit are shown, along with the un-interfered fractions of D1(2420)0 (light
gray), D�

2(2460)0 (dark gray) and D0
1(j = 1

2 ) (cross-hatched).
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Figure 5.3: Background-subtracted weighted projections of the four-dimensional fit onto the
M(D�+π−) axis. The differences among the distributions are more clearly visible than in
Figure 5.2.
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The log-likelihood of our fit is 43916.10; thus, the fit is about one sigma more likely than

the typical fit. The relationship between the log-likelihood of this fit and the expected

distribution is shown graphically in Figure 5.4. Evaluation of the probability integral results

in a confidence level of 86% for the fit.
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Figure 5.4: The expected distribution of lnL and the maximum lnL for the fit to the data.

5.1 Consistency Checks

Two important consistency checks have been performed. The first involves genera-

tion of Monte Carlo samples according to the parameters found by the fit to the data. Ten

complete simulations of the data were drawn from the Monte Carlo samples shown in Table

4.1. CLEO continuum Monte Carlo was used to draw samples for the continuum background.

The results of these fits are summarized in Table 5.4. A plot showing the distribution of

lnLmax for these fits along with the expected and actual lnLmax for the fit to the data is

shown in Figure 5.5. The apparent shift in likelihood distributions is attributed to small

differences in the observed distributions for continuum Monte Carlo and the off-resonant
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data.

Table 5.4: Results of fits to ten Monte Carlo samples generated with the estimated parameters
from the fit to the data. Ng is the generated value for each parameter. Nf and σf are the
mean estimated value and error for each parameter from the fit. σNf

is the error on the

mean estimated value for the ten fits. χ2 is average of the chi-squared discrepancy for each
parameter over the ten fits.

Parameter Ng Nf σf σNf
χ2

Background yields
Continuum yield 4025 4077 165 53 0.96
B0→D�+ π− 222 229 16 5.7 0.89
B0→D�+ ρ− 714 687 66 22 0.99
B−→D0

J π− mis-recon 308 296 75 24 1.13
B0→D+

J π− 470 420 102 35 1.24
Other BB background 2448 2420 142 50 1.08
B−→D0

J π− signal 632 640 72 22 1.10
Signal yields

B−→D1(2420)0 π− 223 225 53 16 1.08
B−→D0

1(j = 1
2 )π− 344 330 65 22 0.97

B−→D�
2(2460)0 π− 100 102 24 8.2 0.87

B−→D�+ π− π− non-res 199 227 62 18 1.17
D0

1(j= 1
2 ) lineshape

MD0
1(j=1

2 ) (GeV) 2.461 2.477 0.039 0.017 1.06
ΓD0

1(j=1
2 ) (GeV) 0.290 0.279 0.085 0.025 0.92

Mixing and interference
β 0.368 0.361 0.093 0.03 1.00
φ -0.244 -0.268 0.53 0.18 1.07
δ1 2.62 2.58 0.32 0.10 0.82
δ2 2.10 2.08 0.32 0.13 0.96

The second check was a fit to the wrong-sign distribution in data corresponding

to the final state D�+π+π−. Since B+ decays to this final state are highly suppressed, the

reconstructed mass of the candidate D�π produces distributions that are similar to those for

right-sign background. Fits were performed to this sample using the expected wrong-sign

distributions for the backgrounds and the right-sign distributions for the signals. The fit was
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Figure 5.5: A histogram of lnLmax from fits to ten Monte Carlo samples generated with the
estimated parameters from the fit to the data. The expected distribution and the lnLmax for
the fit to the data are also shown. The small shift between the two distributions is attributed
to the observed difference between the off-resonant data and the continuum Monte Carlo.
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first minimized with the signal distribution fixed to the right-sign result. The fit was also

minimized with the signal distribution floating as it was for the right-sign fit. The estimated

background yields were consistent with those from the right-sign fit while the yields in the

signal distributions were consistent with zero for both fits.

With the signal distribution floating from various initial configurations, three dif-

ferent local minima were found with similar lnL. No convincing minima were found for the

mixing and interference parameters. Table 5.5 shows the estimated parameters for the most

likely wrong-sign fit. The confidence level of this fit is 95%. The (∆χ2/DOF ) between the

expected fit and the most likely fit is 1.16. A projection of this fit onto the M(D�π) axis is

shown in Figure 5.6.

Table 5.5: The results of the fit to the the wrong-sign data as described in the text.

Expected Estimated
Parameter

value value
Background yields

Continuum yield 9232± 380 8863 ± 256
B0→D�+ π− 222 ± 17 246 ± 18
B0→D�+ ρ− 725 ± 78 917 ± 88
B−→D0

J π− mis-recon 862 ± 218 908 ± 116
B0→D+

J π− 495 ± 101 422 ± 107
Other BB background 4399± 241 4771 ± 260
B−→D0

J π− signal 0 52 ± 67
D�π−π− Yields

B−→D1(2420)0 π− 0 6 ± 13
B−→D0

1(j= 1
2 )π− 0 43 ± 65

B−→D�
2(2460)0 π− 0 4 ± 9

B−→D�+ π− π− non-res 0 94 ± 90
D0

1(j = 1
2 ) lineshape

MD0
1(j=1

2 ) (GeV) — 2.907± 0.190
ΓD0

1(j=1
2 ) (GeV) — 0.148± 0.075

It is worth noting that ARGUS used this wrong-sign distribution to model the

background shape in a similar analysis of the narrow resonances with low statistics [21].

Examination of the right- and wrong-sign distributions for off-resonant data shows that
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Figure 5.6: A projection of the wrong-sign fit onto the M(D�π) axis. The small estimated
contribution from the resonant signal lineshape is shown.



5.2. SYSTEMATIC ERRORS 75

charge correlations among the pions produces somewhat different distributions. A much

larger effect is caused by the fact that random backgrounds scale up by a factor of two

from right-sign to wrong-sign while correlated feedthroughs such as B0→D�+ π− and B0→
D�+ ρ− contribute almost equally in both signs. Had we used this distribution to model our

background shape in the fit, the yield of the broad resonance would have been much larger

as can be readily seen by comparison of Figures 5.1 and 5.6.

5.2 Systematic Errors

Systematic errors from several sources must be considered. Estimates of these errors

are summarized in Tables 5.6, 5.7 and 5.8.

Table 5.6: Systematic errors on the total and non-resonant branching fractions for B− →
D�+ π− π−. The first six errors alter the branching fraction through changes in efficiency.
The remaining seven effect the estimated yields through changes in the signal and background
shapes.

D�+π−π− D�+π−π− non-resonant
Luminosity 2.0% 2.0%
B(D�+→D0 π+)[22] 2.0% 2.0%
R2 cut 3.1% 2.8%
Beam energy 4.6% 3.7%
πslow parameters 1.0% 1.0%
π± reconstruction 8.0% 8.0%
π± ID 4.0% 4.0%
επslow slope 3.1% 7.7%
Background shape 4.1% 7.2%
MD1(2420)0 0.1% 0.5%
ΓD1(2420)0 0.6% 0.5%
MD�

2 (2460)0 0.1% 0.5%
ΓD�

2 (2460)0 0.4% 1.0%
Fit method 2.4% 4.7%
Total 12.4% 15.7%

An error in reconstruction efficiency may be introduced by poor modeling of the

event shape in the Monte Carlo. The variation in fit results for different R2 cuts in the range
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Table 5.7: Systematic errors on the product branching fractions for B− → D0
J π−, D0

J →
D�+ π−. The first six errors alter the branching fraction through changes in efficiency. The
remaining seven effect the estimated yields through changes in the signal and background
shapes.

B−→D0
J π−,D0

J →D�+ π−

D1(2420)0 D0
1(j= 1

2 ) D�
2(2460)0

Luminosity 2.0% 2.0% 2.0%
B(D�+→D0 π+)[22] 2.0% 2.0% 2.0%
R2 cut 3.5% 2.3% 3.2%
Beam energy 3.2% 4.8% 3.5%
πslow parameters 1.0% 1.0% 1.0%
π± reconstruction 8.0% 8.0% 8.0%
π± ID 4.0% 4.0% 4.0%
επslow slope 5.4% 6.8% 4.7%
Background shape 4.6% 7.1% 4.6%
MD1(2420)0 2.2% 4.7% 1.0%
ΓD1(2420)0 10.3% 1.7% 2.0%
MD�

2(2460)0 1.3% 0.3% 1.0%
ΓD�

2(2460)0 0.5% 0.6% 7.0%
Fit method 2.1% 4.2% 2.0%
Total 16.6% 16.0% 14.6%

Table 5.8: Systematic errors on the parameters describing the lineshape, mixing and inter-
ference of the DJ .

MD0
1(j=1

2 ) ΓD0
1(j=1

2 ) β φ δ1 δ2

πslow efficiency slope 1.1% 2.9% 3.0% 4.2% 0.6% 0.9%
Background shape 0.3% 6.7% 5.4% 23% 1.4% 3.0%
MD1(2420)0 0.2% 2.8% 6.8% 48% 2.2% 5.5%
ΓD1(2420)0 0.5% 1.7% 4.1% 27% 1.7% 1.9%
MD�

2(2460)0 — 0.3% 0.6% 2.9% 0.4% 2.9%
ΓD�

2 (2460)0 — 2.1% 0.6% 9.0% — 0.3%
Fit method 3.6% 3.7% 2.7% 12.5% 5.2% 4.3%
Total 3.8% 9.1% 10.5% 62% 6.1% 8.4%
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0.20 < R2 < 0.30 provides the estimates of errors from this cut shown in Tables 5.6 and 5.7.

Mis-estimation of the beam energy and the πslow tracking parameters produce un-

certainties in the efficiency for our reconstruction method. The error in signal efficiency from

Ebeam is estimated by variation within known errors for each dataset. The loss of efficiency

due to mis-measurement of the slow pion is 4%. Assuming this loss is modeled correctly to

25% in the Monte Carlo, we estimate the error from this source at 1%.

The correlated errors on efficiency for reconstruction of the three pions are roughly

1%, 2% and 5% for the fast, middle and slow pions from B−→D0
J π− decays. The sum of 8%

is also an accurate estimate for non-resonant B−→D�+ π− π− decays. The pion consistency

cuts also introduce efficiency errors that add linearly. The error due to these cuts is roughly

1.3% for each of the three pions.

There is an uncertainty in the slope of the reconstruction efficiency for charged

tracks between 50 and 150 MeV. It is estimated that the error on the relative efficiency at

50 and 150 MeV is 10%. The effect of this uncertainty was modeled for the extreme cases

by re-weighting the off-resonant and Monte Carlo samples with the functions

F (p) = 1 ± 0.1
150− p

100
(5.2.1)

applied to all pions in this momentum region and refitting the data.

Uncertainty in the lineshapes for the narrow D1(2420)0 and D�
2(2460)0 are an im-

portant source of systematic error. Both the mass and width of these resonances were varied

within their known errors [2] to estimate the uncertainty from this source.

Systematic error due to uncertainty in the background shapes is estimated by vari-

ation of each fraction within the known limits, based on errors in reconstruction efficiencies

and branching fractions. The systematic error from the fit technique is estimated by varying

the number of Monte Carlo points used to estimate the pdf by a factor of two.

An attempt was made to include the effects of these systematic errors in the measure

of statistical significance. The factors responsible for systematic changes in the pdf were

varied coherently to minimize the significance of an individual parameter. The significance

of that parameter was then retested. Repeating this process for each parameter produces

the results in Table 5.9.
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Table 5.9: Overall significances of the yields, and the mixing and interference parameters of
the resonances.

Parameter Significance
Yields

B−→D1(2420)0 π− 4.6σ

B−→D0
1(j = 1

2 )π− 5.7σ

B−→D�
2(2460)0 π− 4.6σ

B−→D�+ π− π− non-res 2.1σ

Mixing and interference
β 1.7σ

φ < 1σ

δ1 4.0(1.2)σ
δ2 2.0(1.3)σ

5.3 Spin-parity Assignment for D0
1(j= 1

2)

We have tested the JP = 1+ hypothesis for the spin-parity of the broad resonance.

The 0+ assignment is forbidden by parity conservation, but the sequence of assignments 0−,

1− and 2− could all decay to D�+π via a p-wave intermediate state. Additionally, the 2+

assignment could decay via the d-wave intermediate state. The respective angular amplitudes

in the decay angles for these cases are (f -wave contributions are neglected)

a0−(cos θ2, cos θ3, χ) = − cos θ3

a1−(cos θ2, cos θ3, χ) = i sin θ2 sin θ3 sinχ

a2−(cos θ2, cos θ3, χ) = (3 cos2 θ2 − 1) cos θ3

−3 sin θ2 cos θ2 sin θ3 cosχ

a2+(cos θ2, cos θ3, χ) = −i sin θ2 cos θ2 sin θ3 sinχ.

(5.3.1)

The data were fit again using these angular amplitudes for the broad resonance.

When testing one of these amplitudes, no mixing with the D1(2420)0 was allowed, although

the D1(2420)0 was allowed to decay through both d-wave and s-wave intermediate states.

The mass and width parameters that describe the broad resonance were allowed to float

freely in the fits.
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The statistical significance (
√

2∆ lnL) with which the 1+ assignment is favored

over each of these possibilities is listed in Table 5.10. By testing the effects of our systematic

uncertainties on the (lnLmax) of each spin-parity assignment, we may include these effects

in a measure of overall significance. This overall significance for the 1+ assignment is also

listed in Table 5.10. These results strongly support the assignment of 1+ spin-parity to the

broad resonance.

Table 5.10: The maximum log-likelihood for each tested assignment of spin-parity. The
significance of the 1+ assignment relative to each alternative is listed. The overall significance
was tested as described in the text.

Statistical Overall
JP lnLmax significance significance
1+ 43916.10 — —
0− 43912.98 2.5σ 2.0σ

1− 43909.60 3.6σ 3.3σ

2− 43902.37 5.2σ 4.9σ

2+ 43905.45 4.6σ 3.5σ

5.4 Alternate Parameterizations

It is not clear whether the parameterization of Eq. 1.1.23 is optimal, or even

appropriate for the mixing and strong phases among the resonances. One possibility is the

‘grand’ amplitude

A = α1n A1n

(
a1d cosβ + a1se

iφ sin βeiδ0
)

+ α1b A1b

(
a1s cosβeδ0 − a1de

iφ sinβ
)

+ α2 A2 a2

+ αnon−res.

(5.4.1)

Here, we assume that the only significant phase is between the s-wave and d-wave channels

of the 1+ resonances: the phases among the mass eigenstates are assumed to be negligible.

Using this convention to fit the data yields the results shown in Table 5.11, to be compared

with Table 5.2.
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Table 5.11: Details of the fit to the data for the signal distribution with the parameterization
shown in Eq. 5.4.1. Yields in the resonant sub-channels are corrected for their relative
efficiencies. The yields in the D1(2420)0, D�

2(2460)0 and non-resonant channels are only
slightly different from the results in Table 5.2. The same is true for the mass and width of
the D0

1(j = 1
2 ). The change in yield for the broad resonance is slightly more than 1σ.

Central Statistical
Parameter

value error

D�π−π− Yields
B−→D1(2420)0 π− 237.1 ±42
B−→D0

1(j = 1
2 )π− 420.0 ±41

B−→D�
2(2460)0 π− 109.5 ±26

B−→D�+ π− π− non-res 160 ±71
D0

1(j = 1
2 ) lineshape

MD0
1(j=1

2 ) (GeV) 2.492 ±0.026
ΓD0

1(j=1
2 ) (GeV) 0.326 ±0.086

Mixing and interference
β 0.764 ±0.101
φ 2.66 ±0.12
δ0 1.98 ±0.16
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As in the previous fit, the net interference is negative, so that the sum of the

individual product branching ratios would yield 1.103 ± 0.051 times the observed total res-

onant contribution to the D�+π−π− final state (697 events). The log-likelihood of this fit

is 43919.47. Thus, with fewer free parameters, the parameterization of Eq. 5.4.1 is favored

by 2.6σ over that of Eq. 1.1.23. Comparison with Table 5.2 shows that the errors on the fit

parameters are similar or smaller than in the previous fit.

Neither the yields of the D0
J nor the parameters of the broad resonance are severely

effected by this change. However, the values of the mixing parameters are altered profoundly.

This fit predicts equal parts of s-wave and d-wave in the decays of the 1+ states. Meanwhile,

the contribution of the mixing phase gains an overall (-) sign.

Subsequently, several suggestions have been made regarding possible improvements

to our ‘grand’ amplitude. These changes affect both the degrees of freedom for the strong

phases and the modeling of the mixing and lineshapes for the partial waves of the 1+ states.

It is not clear at this time what parameterization is necessary to accurately capture the

underlying physics of these decays.

Thus, we use the central values from our original fit and ascribe a systematic un-

certainty on the branching fractions and the lineshape of the D0
1(j = 1

2 ) due to our parame-

terization. We base these estimates on the results of the fit shown in Table 5.11. In addition,

we emphasize that the results obtained for the mixing parameters and strong phases must

be treated with great caution. Further investigation will be necessary to finalize those mea-

surements and will be reported upon in the near future.

5.5 Conclusions

The four-dimensional fit to the data provides convincing evidence for B−→D0
J π−

decays to all three DJ that can decay to D�+π−. Converting these yields to branching ratios

gives the measurements,

B (B−→D�+ π− π−total
)

= (29.2 ± 4.5 ± 3.8 ± 3.1)×10−4 (5.5.1)

B (B−→D�+ π− π−non-res
)

= (9.7 ± 3.6 ± 1.5 ± 1.9)×10−4 (5.5.2)
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B (B−→D1(2420)0 π−)B (D1(2420)0→D�+ π−) = (6.9 +1.8
−1.4 ± 1.1 ± 0.4)×10−4

B (B−→D0
1(j = 1

2 )π−)B (D0
1(j = 1

2 )→D�+ π−) = (10.6 ± 1.9 ± 1.7 ± 2.3)×10−4

B (B−→D�
2(2460)0 π−)B (D�

2(2460)0→D�+ π−) = (3.1 ± 0.84 ± 0.46 ± 0.28)×10−4.

(5.5.3)

The final error is due to the uncertainty in the parameterization of the strong phases. The

sum of the contributions to the D�π−π− final state is greater than the total observed due

to the destructive interference between the resonant contributions. Using the DJ branching

fractions that are assumed in much of the theoretical literature [23]:

B (D1(2420)0→D�+ π−) = 2/3 (5.5.4)

B (D0
1(j= 1

2 )→D�+ π−) = 2/3 (5.5.5)

B (D�
2(2460)0→D�+ π−) = 0.20, (5.5.6)

we obtain the absolute B−→D0
J π− branching fractions,

B (B−→D1(2420)0 π−) =
(
1.04 +0.27

−0.21 ± 0.17 ± 0.07
)× 10−3 (5.5.7)

B (B−→D0
1(j = 1

2 )π−) = (1.59 ± 0.29 ± 0.26 ± 0.35) × 10−3 (5.5.8)

B (B−→D�
2(2460)0 π−) = (1.55 ± 0.42 ± 0.23 ± 0.14) × 10−3. (5.5.9)

This measurement provides evidence that establishes the existence of a broad

D�+π− resonance with a significance of 5.7σ. Tests of the JP assignments, 0−, 1−,1+, 2−,

2+ favor the assignment of JP = 1+ to this state by 2σ relative to the next best alternative,

which is 0−. The mass and width of this state are determined to be

MD0
1(j=1

2 ) = 2.461+0.041
−0.034 ± 0.010± 0.032GeV (5.5.10)

ΓD0
1(j=1

2 ) = 290+101
−79 ± 26 ± 36MeV, (5.5.11)

and the mixing angle and mixing phase between the two 1+ states are found to be

β = 0.368± 0.100 ± 0.040 (5.5.12)

φ = −0.244± 0.42 ± 0.15. (5.5.13)

We measure the strong phases that cause interference among resonant decays to be

δ1 = 2.62 ± 0.30 ± 0.16 (5.5.14)

δ2 = 1.04 ± 0.34 ± 0.09, (5.5.15)
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where these phases are measured relative to that of the D1(2420)0. The imaginary parts of

these phase shifts have a significance of 1.6σ and 1.7σ respectively. Our fit is not sensitive

enough to determine the strong phase between the resonant and non-resonant contributions

to the D�+π−π− final state. Due to the uncertainties in the modeling of the phases and

mixing, we urge great caution in the interpretation of the results for β, φ, δ1 and δ2.

CLEO, ARGUS and E687 have published the most recent results for the decays

of the D0
J [11, 10, 9, 12, 24]. Partial wave analysis of the D�

2(2460)0 led to the spin-parity

assignment of 2+. The lack of D1(2420)0 decays to the D+π− final state, and decay angular

distributions consistent with the d-wave decay of the 1+ leads to the assumption that the

D1(2420)0 has spin-parity of 1+ and that the mixing angle, β, is small.

Both CLEO and ARGUS have also obtained results for the decay

B−→D1(2420)0 π−[25, 21]. Earlier results of the present analysis based on a two-dimensional

fit reported a measurement for the decay to the D�
2(2460)0 as well. A summary of these

results is presented in Table 5.12. One puzzle created by our measurement is the larger

Table 5.12: A summary of existing measurements of the decays B−→D0
J π−, including the

earlier results of this analysis using a two-dimensional fit.

B(B−→D0
J π−) × B(D0

J →D�+ π−)
D1(2420)0 D�

2(2460)0

ARGUS(1994)[21] (16.8 ± 4.7 ± 4.0) × 10−4 < 6.9 × 10−4

CLEO(1994)[25] (7.4 ± 3.3 ± 1.3) × 10−4 < 5.6 × 10−4

CLEO(1996)[26] (7.8 ± 1.6 ± 1.0) × 10−4 (4.2 ± 1.6 ± 0.6)× 10−4

This measurement (6.9 +1.8
−1.4 ± 1.1) × 10−4 (3.1 ± 0.84 ± 0.45)× 10−4

than expected branching ratio for B− → D�
2(2460)0 π−[27]. A number of theoretical and

experimental factors may be responsible for this discrepancy. Among them are the CLEO

measurement of the ratio
Γ
(
B− → D�

2(2460)0	−ν�

)
Γ (B− → D1(2420)0	−ν�)

, (5.5.16)

and of the DJ branching fractions that are also dominated by CLEO measurements. More

precise measurements of the DJ branching fractions will be important in unraveling this

mystery.

There are theoretical predictions for the mass and width of the D0
1(j = 1

2 ) [8] as well

as the mixing of the 1+ states [8, 28]. The most specific predictions for the spectroscopy
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of the DJ are due to Godfrey and Kokoski and are shown in Table 5.13 along with our

results. The measured value of the 1+ mixing angle is somewhat larger than expected. The

Table 5.13: The predictions of Godfrey and Kokoski compared to the current results.

MD0
1(j=1

2 ) − MD1(2420)0 ΓD0
1(j=1

2 ) β

G & K +10 MeV 250–1000 MeV 0.17
Measured +39.2 +42

−35 MeV 290 +104
−83 MeV 0.368 ± 0.11

theoretical estimate of β depends upon many quantities including the width of the D0
1(j = 1

2 ).

Based upon the larger than expected width of the D1(2420)0, others have suggested that the

mixing might be somewhere in the neighborhood of 0.20 [28].

There are also predictions for the B−→D0
J π− branching ratios that use the same

assumptions as we have for the D0
J →D�+ π− branching ratios. These predictions are [29]

B (B−→D1(2420)0 π−) = 4 × 10−4 (5.5.17)

B (B−→D0
1(j = 1

2 )π−) = 6 × 10−4 (5.5.18)

B (B−→D�
2(2460)0 π−) = 6 × 10−4. (5.5.19)

Our results appear to disagree with these absolute branching fractions, however, the agree-

ment with the pattern of relative branching fractions is striking.
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Chapter 6

SVX Design

6.1 Introduction

Distinguishing the decay vertexes in complicated reactions has often been the key

to new discoveries in particle physics. These include the first observation of the pion [30],

early evidence for the neutrino [31], and the discovery of the kaon [32] which led ultimately

to the quark model.

The task performed by the cloud chamber in the discovery of the Kaon was simple

by modern standards. The observed K0
S has a lifetime of about 10−10 sec. and travels a few

centimeters before decaying into a pion and a proton. The B and D mesons we now wish

to study in detail are more massive and have greater phase space in which to decay. As a

result, they have lifetimes on the order of 10−12 sec. and decay lengths measured in tens

or hundreds of microns. Fortunately, solid state devices capable of detecting the passage of

charged particles have made such precise measurements possible. These detectors have been

successfully used in a number of recent fixed target and collider experiments.

A silicon vertex detector using this technology has been constructed for the CLEO

II experiment at the CESR e+e− collider. This device, the SVX, implements the latest

advances in silicon microstrip detectors and mechanical design to identify detached decay

vertexes from charm mesons, tau leptons and other long-lived particles. This detector and

its descendants will lead the way to a more complete understanding of heavy quarks, the

strong interaction that binds them together and the weak interaction responsible for their

87
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decays.

6.2 Objectives

The primary objective of the SVX design must be reconstruction of decay vertexes.

For the study of CP violation in the B system, we would like to measure the flight paths of

the B mesons before decaying to specific final states. At a symmetric Υ(4S) machine such

as CESR, the B lifetime of 1.6 ps corresponds to a flight path of only ≈ 30 µm. Meanwhile,

RMS of the beam spot in the CLEO interaction region is roughly 350 µm (horizontal) × 7

µm (vertical) × 1.8 cm (Z) [33] and typical single hit resolutions for the current generation

of silicon detectors is 10-20 µm. Clearly, reconstructing separated vertexes from B decays

at CLEO is beyond the reach of even the most optimistic scenario. Future ‘asymmetric B

factories’ will address this problem by using colliding beams of different energies to produce

Υ(4S) that are boosted in the lab frame.

The D mesons have shorter lifetimes still. However, the D momentum B decay

results in flight paths on the order of 300 µm for D+ and 120 µm for D0. D mesons from

continumm production have even longer flight paths. By using the SVX to identify these

decay vertexes, the D mesons may be studied in greater detail. Since the majority of B

mesons decay to a final state including a D meson, this also enables most of the B decay

width to be studied with higher precision.

The situation for τ lepton decays at CLEO is comparatively straightforward. Tau

leptons at CLEO can be produced in the reaction e+e− → τ+τ− giving βγcτ ≈ 270 µm.

Large, clean samples of τ decays should become possible.

A secondary objective of the SVX design is improved tracking of charged particles.

The CLEO II detector described in Part I, provides good resolution for measurements in the

r-φ plane. However, only tracks that reach the outermost drift chamber are well measured

in z. This results in poor determination of θ and the z impact parameter, especially for

low-momentum tracks. The replacement of the PTL with an SVX capable of making precise

z measurements will significantly improve tracking in the CLEO detector.

These objectives define a starting point for the SVX design. To provide vertexing

in three dimensions and improve low-momentum tracking, we need at least two precision

measurements in both r-φ and z as close to the interaction region as possible. A third layer
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adds redundancy and the capability for stand-alone tracking.

6.3 Constraints

Several constraints shape the design and construction of the SVX. Primary among

them are

• time — The time allocated for construction of the SVX is minimal compared to other

similar detectors which have been built. The SVX design and construction process

must stress simplicity to achieve high yields and rapid assembly.

• space — Since the VD will not be replaced, the SVX must fit entirely within the space

currently occupied by the PTL. This creates a number of heat removal and cabling

problems for a three-layer device.

• material — There are tight constraints on the amount of material that may be used

in the SVX. The PTL presents about 0.5% of a radiation length to tracks before they

reach the VD or DR. Significant additional material will increase multiple scattering

for low-momentum tracks. At 0.3% per 300 µm layer, a three-layer device doubles

the material without including a support structure. Considerable importance must be

placed on the lightest possible supports, compounding the problems of heat removal

and dimensional precision.

• alignment — The resolution of silicon detectors far exceeds that of any other element

of the CLEO detector. This renders the VD and DR incapable of providing the in-

formation necessary to understand the alignment of the individual silicon detectors

within the SVX. Experience at ALEPH has shown the importance of overlap between

adjacent detectors in performing this alignment. This overlap magnifies the difficulty

of designing the SVX within the available space.

• high luminosity — The CESR Phase II design luminosity is 6 × 1032cm−2s−1. The

SVX must be capable of fast readout while distinguishing signal from considerable

backgrounds. All components must be sufficiently radiation-hard to withstand the

significant dosage expected over the lifetime of CLEO II.V.
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Table 6.1: General specifications of the SVX detector.

Layer 1 Layer 2 Layer 3 Total
Radius 23 mm 32 mm 48 mm —
Active area 201.6 cm2 351.0 cm2 806.6 cm2 1359.2 cm2

Angular coverage 92% 92% 92% 92%
# silicon detectors 16 16 64 96
# sense strips 12096 16128 42336 70560
# readout channels 6048 8064 12096 26208
Heat load 24W 32W 48 W 104 W

6.4 Overview

The SVX, pictured in Figure 6.1 and summarized in Table 6.1, consists of 96 silicon

microstrip detectors assembled in eight octants providing 92% coverage of the solid angle.

The octants are placed inside a carbon fiber composite tube with a 5% overlap between the

azimuthal coverage of adjacent octants in all three layers.

The twelve detectors in each octant are arranged to form three layers at the approx-

imate radii of 23mm, 32mm and 48mm, which we call layers one, two and three respectively.

Layers one and two of each octant consist of two detectors each, one on either side of the

ideal interaction point in z (East/West along the beamline). Layer three consists of eight

detectors in each octant. The coverage in azimuthal angle, φ, is split into two ‘sub-layers,’

one at 47mm and one at 48mm. Each of these sub-layers has four detectors, two on either

side of the IP which are glued end to end and connected in a daisy-chained fashion, giving the

effect of one wafer as in layers one and two. Each of these detectors or detector assemblies

is glued to a pair of beryllium oxide (BeO) hybrid circuit boards. These hybrids contain

the pre-amplifiers and readout electronics for the silicon detectors and are connected to the

detectors by wirebonds.

These detector-hybrid assemblies are glued to a support structure consisting of

Kevlar r©a fiber composite beams glued to BeO ceramic endpieces. The surfaces of the silicon

detectors are glued directly to the Kevlar r© beams while the hybrids are sandwiched between

the BeO endpieces, forming a passive cooling path for the electronics on the hybrids. Layers

one and two are glued to either side of a beam assembly consisting of a single Kevlar r© beam
aKevlar r© Kapton r© and Teflon r© are registered trademarks of the DuPont Corporation
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Figure 6.1: An overview of the SVX design. The view of the r-phi plane (top) shows the
overlapping octants around the Be beampipe, supported by Kevlar r© fiber U-channels. The
view of the r-z plane (bottom) shows the BeO hybrids with CAMEXes sandwiched between
the BeO endpieces. The vertical dimension (r) is exaggerated somewhat in the r-z view for
clarity.
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and two endpieces. The beam assembly for layer three consists of two Kevlar r© beams, one

for each sub-layer, and a common BeO endpiece on either end that unifies the two sub-layers

into a single unit. The inner beam assembly of layers one and two is then glued to the outer

beam assembly of layer three at the endpieces, forming a complete octant.

Completed octants are placed in sets of four inside two semi-cylindrical carbon fiber

composite housings. Copper tubing for cooling fluid fits inside a channel in the housings,

drawing the heat load of each octant through the endpieces for the outer beam assembly.

There are shorter, thicker carbon fiber extensions that house electronics to drive the signals

through the long cables to the data acquisition electronics. Stainless steel support rings laid

into the outer ends of the extensions are the mounting point for the SVX as a whole.

6.5 Silicon Detectors

The 96 silicon detectors used in the SVX are of five varieties, whose properties

are summarized in Table 6.2. There are two designs in layer one, one for each side of the

interaction point (IP) in z, that are mirror images of one another. The same is true in layer

two. In layer three, a fifth symmetric design is glued edge-to-edge with layer one detectors

to produce the longer detector assemblies required. This arrangement is dictated by re-use

of the design for layer one and the constraints of fabricating the detectors from four-inch

diameter silicon wafers.

To enable the use of pre-existing 64-channel readout electronics, the number of

channels on either side of each detector is a multiple of 63. A spare was left so that defective

amplifier channels could be skipped when necessary. Wirebonds are used to connect the

detectors to readout electronics. The pitch of the wirebonding pads on the detectors must

match the 97 µm pitch of pads on the readout chips, so a ‘fan-in’ of the readout strips

occurs at the ends of the detectors. Layer one detectors have wirebond pads at both ends

to facilitate their use in layer three, where they are wirebonded to the extensions at one end

and the hybrid electronics at the other.

The detectors operate on relatively straightforward principles. The bulk silicon is

slightly n-doped, giving it an excess of negative charge carriers. Strips of p-type material

are implanted on one side, the ‘p-side’, with an excess of positive charge carriers. On the

other side, the ‘n-side’, strips of n-type material are implanted perpendicular to the p-side
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Table 6.2: A summary of the properties of the silicon detectors. A layer three detector
assembly consists of a layer one detector and a layer three extension daisy-chained together.

Layer 3
Layer 1 Layer 2

extensions
# designs 2, East & West 2, East & West 1
Full depletion voltage 60 V 60 V 60 V
Minimum ionizing signal 22,000 e− 22,000 e− 22,000 e−

Length 65.580 81.270 61.045
Width 22.568 30.128 22.568
Active length 59.535 mm 76.356 mm 59.535 mm
Active width 21.168 mm 28.614 mm 21.168 mm
p-side (r-φ) properties

# implants 753 1005 753
Implant width 10 µm 10 µm 10 µm
Implant pitch 28.0 µm 28.5 µm 28.0 µm
# instrumented strips 189 252 189
# readout channels 189 252 189
Readout pitch 112 µm 114 µm 112 µm
Theoretical resolution 12 µm 12 µm 12 µm

n-side (z) properties
# implants 567 756 567
Implant width 20 µm 20 µm 20 µm
Implant pitch 105 µm 101 µm 105 µm
p-barrier width 69 µm 65 µm 69 µm
# instrumented strips 753 1005 753
# readout channels 189 252 189
Readout capacitance 22 pf 28 pf 22 pf
Theoretical resolution 30 µm 30 µm 30 µm
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implants. A p-n junction is formed at the interface between the p-strips and the bulk n-type

silicon. The mobile positive and negative charge carriers diffuse through the material and

combine near this interface, leaving a layer devoid of free charge called the depletion layer.

The lattice charges that remain create an electric field pointing toward the p-side in this

region.
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Figure 6.2: A diagram showing formation of the depletion layer in an unbiased silicon
detector.

When an ionizing particle passes through the silicon, it excites electron-hole pairs

into the conduction band. A typical minimum ionizing particle will produce approximately

22,000 such pairs of free charge carriers in passing through the 300 µm thick layer of silicon.

The electric field in the depletion layer causes the electron-hole pairs produced there

to drift toward the p and n-sides respectively. Those produced elsewhere in the silicon diffuse

and recombine. Thus, only a small fraction of the charge can be collected on the p-side strips

and none collected on the n-side strips. By placing a voltage across the detector so that

the p-n junction is reverse-biased, the conduction electrons in the rest of the bulk n-type

silicon are removed, enlarging the depletion layer. When the bulk silicon is devoid of free

charge carriers, the device is said to be fully depleted. The larger depletion region allows

nearly all of the electrons and holes to drift the full thickness of the silicon and be collected

on the orthogonal p-side and n-side strips. The increased electric field increases the drift

velocity, allowing faster charge collection. The voltage required to fully deplete the silicon is

approximately 60V.

On the n-side there is an additional complication. A thin layer of mobile charge

carriers exists at the n-side surface of the bulk silicon even when the device is fully depleted.
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Figure 6.3: A diagram of a silicon detector fully depleted by application of bias voltage.
Full depletion allows all of the electron-hole pairs produced by the passage of particles to be
collected.

These electrons cause the n-strips to be shorted together, making it impossible to collect

charge on a single strip. A wide p-type strip is implanted between each pair of n implants

to drive away these electrons and isolate the n-strips.

The silicon is read out via aluminum sense strips placed above the implants. Only

every fourth strip is read out on the p-side. The remaining sense strips contribute to the

resolution of the device by capacitive charge sharing. Every strip on the n-side is read out.

Instead of being directly connected to the implants (‘DC coupled’), the strips are deposited

on top of a 1µm layer of silicon dioxide (SiO2). This creates a capacitor between each charge-

collecting implant and its aluminum sense strip (‘AC coupled’), with the SiO2 acting as the

dielectric. As a result, the readout electronics can be operated from a common ground or

other convenient reference, rather than needing to be grounded at the bias voltage. Defects in

the SiO2 layer, called pinholes, can cause breakdown of the capacitor, rendering the channel

inoperable.

Both sides of the detector are read out at the end of the device to save space and

material in the tracking volume. While sense strips on the r-φ side naturally terminate at

the end of the detector, the z-side strips run width-wise across the detectors. A second layer
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Figure 6.4: A diagram showing the orthogonal strips of a silicon detector and the p-stops
necessary to isolate the n-implants.

of readout traces orthogonal to the sense strips carries the signals to the ends of the detectors

on the z-side. These traces are isolated from the sense strips by a 2µm layer of polyamide

insulator. Due to the length-to-width ratio of the detectors, each z-side readout trace is

connected to three sense strips in layers one and two; six in layer three where two detectors

are bonded end-to-end. This leads to a three-fold ambiguity in z position in layers one and

two, and a six-fold ambiguity in layer three. Another effect of the double-metal design is

increased capacitance of the readout traces on the z side.

The bias voltage is applied to the implants through resistors from aluminum bias

rings around the sense region. Ten MΩ polysilicon resistors are used on the n-side. On the

p-side the resistance is from the bulk silicon itself. These resistances range from 10-100 MΩ

over the voltage range in which the detectors are operated and are referred to as ‘punch

through’ resistors.

A one µm layer of SiO2 passivation coats both sides of the detectors. This layer

protects the detectors from physical damage that can result in pinholes and electrically

isolates the sense strips from the environment. To improve this protection, later deliveries of

detectors employed an additional layer of silicon nitride (Si3N4), an extremely hard ceramic
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Table 6.3: Specifications for the CAMEX and JAMEX chips used in the SVX

CAMEX JAMEX
Die size (mils) 250 × 200 × 19 250 × 200 × 19
# input channels 64 64
Input pitch 97 µm 97 µm
Gain 14 mV/fC N/A
# used 320 96

material. These detectors proved more resistant to damage-induced pinholes.

6.6 Readout Electronics

The task of amplifying the charge on each readout strip is performed by the CAMEX

pre-amplifier chip. The CAMEX is a 64-input, VLSI, charge-to-voltage amplifier with multi-

plexed output. The device was originally developed by MPI-Munich for the ALEPH vertex

detector and was chosen for its performance and the simplicity of using a pre-existing device

[34]. Table 6.3 summarizes some essential features of the CAMEX.

The CAMEX operates by sampling the charge on the readout strip four times before

and after the passage of an ionizing particle and taking the difference. A schematic of a single

CAMEX channel is shown in Figure 6.5. The switches R1 and R2, and S1-S4 are controlled

by signals from the data acquisition system and perform the above task as follows. When

R1 is open, charge at the input is converted into a voltage at the output of CSA1. Before

a beam crossing, R2 is kept closed while S1-S4 are sequentially closed and reopened. The

amplifier CSA2 brings charge to its input to zero the voltage there. Operating continuously

in this way, the sampling capacitors, C1-C4, always contain four recent samples of the input.

After a beam crossing, R2 is opened and S1-S4 are closed and reopened again. This

places charge on Cf2 equal to the new charge needed at the sampling capacitors since the last

set of samples before beam crossing. The output voltage is then proportional to the difference

between the input before and after the beam crossing. This scheme gives a four-fold sampling

of the charge collected by the readout strip, enhancing signal to noise since the signal adds

coherently but noise does not. The delay required for the CLEO trigger precludes collection

of the first sample after an event. The cost in signal/noise of having three samples instead
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Figure 6.5: A schematic showing a single CAMEX amplifier channel.

of four is a factor of
√

3/4.

The equivalent noise charge (ENC) when reading out a detector with the CAMEX

using all four samples is the incoherent sum of several sources [35]:

(NOISE)2 =
[
(340 + 31CD)2 +

(
3.6kT

R
+ 1.8qI

)
τ + α2

]
e−ENC. (6.6.1)

The first term is the intrinsic noise of the CAMEX attached to a detector channel with

capacitance CD (in pF). The second term is thermal noise due to the detector resistance R

and shot noise from leakage current, I. The contribution from these sources depends upon

the sampling time, τ , and is approximately 200 e− for our standard sampling time. The last

term is the additional noise from external sources, typically 400–600 e−.

Noise on the n-side is twice that on the p-side, primarily due to the higher capac-

itance of the double-metal readout. Using CD = 22 pF from Table 6.2, we expect roughly

1400 e− ENC on the n-side of layer one. This noise is doubled again in layer three where

readout strips from two detectors are connected to each CAMEX input. With a signal of

22,000 e− this gives S/N ≈ 8 before subtracting 15% from loss of the first sample.

To address this problem, CAMEX chips rendered in a lower-noise CMOS process are

used on the n-side of layer three. This device, otherwise known as the JAMEX, is identical

to the CAMEX in operation, but with one half of the intrinsic noise and noise slope of the

CAMEX. Specifications for the JAMEX are also shown in Table 6.3.

Neither of these chips is radiation-hard. Because of the shielding effect of the

SVX itself, only the CAMEX chips on layer one receive significant dosage, primarily from

synchrotron radiation. Detailed studies [36] have shown that CAMEXes under power begin
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Table 6.4: Properties of the BeO hybrids used in the SVX.

Layer 1&3 Layer 2
# CAMEX/JAMEX 3 4
Design thickness 20 mils 20 mils
# used 48 16
Metallization

& wirebonds
Gold Gold

to experience significant channel losses at 20-30 Krad due to loss of gain. When unpowered,

as during CESR injection, the CAMEX can withstand between 60 and 120 Krad before noise

increases significantly (> 2×), or gain fails for all channels. These levels are well within the

designed lifetime of the SVX, which will be replaced with the installation of CLEO III.

6.7 BeO Hybrids

The readout electronics are mounted on hybrid circuit boards glued directly to

the silicon detectors. These hybrids must conduct the heat from their CAMEX chips (0.25

W/CAMEX) to the thermally conductive support structure. Good contact between the

hybrids and the supports is accomplished by sandwiching the hybrids between the three tiers

of endpieces. This makes them part of the passive cooling path and dimensionally critical

components of the detector.

The double-sided silicon detectors require hybrids with CAMEXes on both sides.

Difficulties fabricating such boards led to a simpler design of two single-sided hybrids glue-

bonded back-to-back. This places great importance on the thermal conductivity and thick-

ness of the glue layer that joins the hybrids.

Basic properties of the hybrids used in the SVX are summarized in Table 6.4. The

hybrids are fabricated on substrates of beryllium oxide ceramic. BeO was chosen for its

unusual properties as an electrically insulating thermal conductor with low Z. The thermal

conductivity of BeO is (260W/(m-◦K)), comparing favorably to metals such as aluminum

(234W/(m-◦K)).

Signals travel between the hybrids and the I/O buffer boards in the housing ex-

tensions via Kapton r© flex circuits with copper traces. Although there are only two hybrid
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Table 6.5: Specifications for the U-channels. The finished weight is the weight after
machining.

Inner beam Outer beam #1 Outer beam #2
Detectors layer 3, layer 3,

supported
layers 1&2

inner sub-layer outer sub-layer
Design thickness 12 mils 12 mils 12 mils
Finished thickness 14–17 mils 13–16 mils 10–15 mils
Finished weight 1.8 g 2.2 g 2.0 g

designs (three including those with JAMEX chips), there are eight different Kapton r© cables

that distinguish the hybrids once they are attached.

6.8 U-channels

The silicon detectors are glued to Kevlar r© composite supports of U-shaped cross

section. These supports must use the smallest amount of material possible while providing

structural integrity and dimensional stability to the silicon. Three types of U-channels are

used in the detector. Their properties are summarized in Table 6.5.

Kevlar r© is a non-conductive aramid fiber with somewhat lower modulus than car-

bon fiber. Because the design calls for the detector to be glued directly to the support

beams, carbon fiber could not be used. U-channels fabricated using carbon fiber composite

have a resistance of ≈ 10Ω from end-to-end and act as antennas. Signals picked up by these

supports generate high noise on adjacent readout traces. Careful grounding of the carbon

fiber failed to reduce this noise to acceptable levels.

A drawback of molded composites is difficulty in producing parts to a high degree of

dimensional accuracy. Finished parts were 10-20% thicker than designed. Windows in non-

critical areas of the beams were added to offset this excess. In addition to windows, notches

are machined in the layer three beams for clearance of the wirebonds connecting the two

detectors in each assembly. Because of these windows and the lower modulus of Kevlar r©,

the silicon detectors are an important structural member of the finished assemblies. In

particular, layers one and two are a sandwich with silicon skins.



6.9. BEO SUPPORTS 101

Table 6.6: Specifications of the BeO endpieces.

Inner endpiece Middle endpiece Outer endpiece
Finished weight 6.5 g 39.5 g N/A
Heat load 1.5 W 3.5 W 6.5 W
Minimum

cross-section
0.41 cm2 0.38 cm2 0.43 cm2

6.9 BeO Supports

The support structure for an octant is completed by BeO endpieces glued to the

ends of the Kevlar r© U-channels. Just as the detectors glue to the faces of the U-channels,

their hybrids are sandwiched between the three tiers of endpieces. Together with the hybrids,

they form the primary mechanical support and the passive heat path to active cooling at the

ends of the carbon fiber housings. This arrangement saves the space and material of active

cooling inside the tracking volume, but places great emphasis on the thermal conductivity of

the glue jonts between the hybrids and these supports. The hybrid electronics at each end of

an octant produce approximately six Watts, all of which must pass through these supports.

As with the hybrids, BeO ceramic was chosen for its excellent thermal conductivity, low mass

and low Z. There are six types of endpieces in each octant, three on each side in z that are

mirror images. Some basic properties of the BeO supports are summarized in Table 6.6.

The innermost supports are glued to the inner Kevlar r© U-channels. These beam

assemblies are then sandwiched between the layer one and layer two detector-hybrid assem-

blies. The second pair attach to the Kevlar r© beams supporting layer three and sandwich

between the hybrids for layer two and layer three. The third pair is glued to the outer sides

of the layer three hybrids and attaches to the carbon fiber housing. Four screws and two

stainless positioning pins fix these supports to the carbon fiber housing. Precision brass

inserts glued into the outermost endpieces provide the points of attachment.

6.10 Carbon Fiber Housings

The octants are supported inside of two half-cylinders of carbon fiber composite.

This allows the finished SVX to be assembled around the new beryllium beampipe before
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installation of both as a unit. The central section of this cylinder is only twenty mils thick,

adding little material to the tracking volume. The housings are much thicker at the ends,

to provide for attachment of the two halves, solid mounting for the octants and mounting

of the central housings to the much heavier housing extensions. A copper tube fits inside a

groove at each end of the housing to deliver cooling fluid to the outer BeO supports at the

ends of the octants.

The semi-cylindrical housing extensions support the receiver boards that buffer I/O

to the hybrids and have stainless steel rings laid into the ends to mount the SVX the the

rest of the CLEO detector. These parts must be very strong, as they support the weight of

the SVX, the beampipe, and two 40Kg tungsten shields during insertion of the detector into

CLEO.



Chapter 7

SVX Construction

7.1 Overview

The SVX was assembled at UCSB between August 1993 and September 1995.

Among the major challenges were

• assembly to the required precision,

• production of 48,000 wirebonds,

• achieving high thermal conductivity of the support structure,

• maintaining high yields.

7.1.1 Precision Assembly

Dimensional precision was achieved using machined aluminum fixtures attached to

pairs of ‘platens’ for positioning parts during glue-bonding. A set of platens is depicted in

Figure 7.1. Each platen consisted of a flat plate of precision-machined aluminum with a grid

of reamed positioning holes and tapped bolt holes. The fixtures holding the two parts to be

mated were positioned using stainless steel pins and bolted onto the platens. The bottom

platen had cylindrical steel posts at each corner, perpendicular to the surface. The top platen

had precision bearings that slid on these rails. The vertical spacing between them was set

using four aluminum standoffs bolted to the bottom platen. By clamping the parts to the

103
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Figure 7.1: A drawing of the platens used to achieve high precision for SVX assembly.
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appropriate fixtures on each platen and lowering one platen onto another, two parts could

be placed with a relative precision of ≈ 10µm.

The fixtures were also machined on a computer controlled mill from billet alu-

minum. Stainless steel pins were used to position the parts on the fixtures. A combination

of mechanical clamps and vacuum chucks were used to attach the parts to the fixtures. Only

vacuum chuck was used for fixturing silicon detectors.

A precise survey of the final positions of the silicon detectors was even more crit-

ical than precision in the assembly process. An optical microscope with three-dimensional

position readout was used to survey the detector. The precision of this microscope with the

highest-power objective was approximately 0.5µm in x and y and 2µm in z. The microscope

had a serial connection to a VaxStation 3100, allowing automated readout and analysis of

predetermined survey fiducials. The positions of the sense strips on all detectors were cat-

alogued as the SVX was assembled. With single-measurement precisions of < 1µm in x

and y and < 3µm in z for a skilled operator, the survey of each octant was accurate to a

few microns. This information was used to generate constants as a starting point for the

alignment of the SVX with charged tracks after installation.

7.1.2 Wirebonding

The task of wirebonding silicon detectors is often contracted to electronics manu-

facturers with large wirebonding facilities. However, a silicon detector is very different from

the components such facilities usually handle. A single misplaced wirebond has the potential

to destroy an entire piece of silicon. For small, inexpensive computer chips with tens of

wirebonds each, the cost of destroying parts with a single bad wirebond is small. The parts

are simply discarded. A silicon detector is worth at least a factor of ten more and requires

hundreds of wirebonds. Even one fatal wirebond in 1, 000 is unacceptable. To maintain the

highest possible yields, a facility was created at UCSB for production of the wirebonds to

the detectors.

All wirebonding was performed on a Kulicke & Soffa 4123 manual wirebondera.

This wirebonder delivers a short pulse of ultrasonic energy while the bonding wedge presses

the wire into the bond pad with some force. The wirebonder was situated in a class-10

clean area along with the surveying microscope. Training on the use of the wirebonder was

aKulicke & Soffa Corp., Willow Grove, Pa.
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Table 7.1: Wires tested for the wirebonding of the silicon detectors.

Wire Composition Tensile strength (g) Elongation (%)
SPM Al-1%Si 14-16 1-3
CFW Al-1%Si 14-16 1-3
Hydrostatics Al-1%Si 15-17 1-4

provided as a personal and professional courtesy by Todd Calvert of the Ferro Corporationb.

To ensure reliable wirebonds, a pull-tester was purchased and all aspects of the

procedure were evaluated. The main variables were wire, bonding wedges, fixtures and

wirebonder settings (power, time, force).

The metallization on both the CAMEX and the silicon detectors is aluminum,

prompting use of aluminum wire for wirebonding. For the 3-4 mil wide wirebonding pads

at both ends, 1 mil wire is the largest recommended gauge. Almost all fine aluminum wire

is alloyed with a small percentage of either silicon or magnesium to produce a harder wire.

Pure aluminum cannot be easily stretched into such fine wire. A disadvantage of these alloys

is that the impurities tend to be unevenly distributed along the length of the wire due to the

low solubility of these elements in aluminum. At a site where the concentration of impurities

is high, there is a weak spot in the wire. The weakness at these points increases as the wire

ages.

Three types of aluminum wire were tested, whose properties are summarized in

Table 7.1. The wire made by Hydrostaticsc was recommended by Promexd, the contractor

for wirebonding of the original SVX for CDF[37]. This wire is produced by high-temperature,

high-pressure extrusion. It is claimed that this results in a more even distribution of silicon.

While the wirebonds produced with this wire were of average strength, the surface irregularity

caused by the extrusion process was problematic. The wire frequently became caught or

otherwise jammed along the wire feed path of the bonder.

The other two wires were essentially indistinguishable. The wire from California

Fine Wiree over that from SPMf due to its availability in relatively small quantities, ensuring

bFerro Corp., Electronic Materials Division, Santa Barbara, Ca.
cHydrostatics Corp., Bethlehem, Pa.
dPromex Inc., Santa Clara, Ca.
eCalifornia Fine Wire Corp.,
f SPM
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that fresh wire could always be used for wirebonding. The wire was stored in a cabinet with

a dry-air supply to prevent oxidation.

Only two wirebonding wedges were tested. The first was the standard wedge for

the 1423 with 1 mil Al wire (# 44129-1520-152) manufactured by Microswiss, a subsidiary

of Kulicke & Soffa. All attempts to feed wire through these wedges were unsuccessful. It

was concluded that the wedges were either not the indicated part for 1 mil wire or that the

machining of the tool was defective. After difficulty obtaining any helpful information from

Microswiss, arrangements were made to return the wedges.

Wedges were subsequently ordered from the Gaiser Tool Corporationg. The smaller

size of this firm was better suited to the custom work required for the SVX. To facilitate

bonding with our large vertical drop and small pitch, custom tungsten-carbide wedges were

designed in cooperation with Gaiser engineers. The part number for these custom wedges is

Gaiser #4560-1520-3/4-CBR(.001)-DSR(.005×.020). These wedges had extra material (dou-

ble side relief) cut away from the sides of the wedge near the foot and performed extremely

well in our application. The lifetime of a wedge was found to be 5, 000–10, 000 wirebonds.

As the wedge wore down the foot became chipped, taking on a porous appearance. The

irregularity of this surface retained aluminum and the foot of the wirebond began to adhere

to the wedge. When the bonding wedge began to lift wirebonds, replacement of the wedge

was necessary.

Development of fixtures to hold the detector-hybrid assemblies during wirebonding

was a key element in improving the process. Rigid support for the silicon was critical to

consistent bonding. Without adequate support, the wafer vibrated, dissipating the ultrasonic

energy used to create the bond. With early fixtures, ‘cold spots’ where good bonds were

difficult to achieve were apparent. The fixtures were redesigned to place support as close to

the bond pads as possible: support directly underneath was not possible due to the presence

of wirebonds on both sides of the device. The fixtures used a mechanical clamp to hold the

hybrid and a vacuum chuck to hold the silicon detector. Since positioning in these fixtures

was not critical, the positioning pins and supports of these fixtures were machined from

Teflon r© to eliminate the possibility of damage.

The pull test stand was also used to test the space of wirebonding parameters. The

three parameters were the length of the ultrasonic pulse, the power of that pulse and the

gGaiser Tool Corp., Ventura, Ca.
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Table 7.2: The standard machine parameters used for wirebonding of the silicon detectors.

Parameter Optimum setting
Power 3.30
Time 2.0
Force 2.5

force with which the wire is pressed into the bond pad. In general, too little power, force

or time resulted in a poor weld between the wire and the bond pad. Too much resulted

in destruction of the bond pad or weakening of the wire adjacent to the bond (the ‘neck’).

Consistent pull strengths of more than six grams with breakage at the neck of the bond were

achieved using the parameters shown in Table 7.2. Figure 7.2 shows a histogram of pull

strengths for these settings.

Figure 7.2: Results of pull tests with the standard settings used for all SVX wirebonding.
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Seven to nine grams is considered good pull strength for 1 mil wire. The observed

failure mode is normal for wirebonds of good quality. These optimized settings were used

for all wirebonding. It would be dangerous to assume that these parameters are universally

optimized, even using identical parts on a similar wirebonder: significant differences exist

among well-calibrated wirebonders of the same model.
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A small decrease in both power and force (P = 2.8, F = 2.0) actually produced

wirebonds with higher median strength. The strongest of these bonds broke at the pull-

testing hook indicating that the tensile strength of the wire was the limiting factor. While

these settings initially appeared to produce stronger bonds, consistency suffered. A small

percentage of these wirebonds had very low pull strength, with the foot of the bond lifting

from the bond pad. A histogram of pull strengths for these settings is shown in figure 7.3.
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Figure 7.3: Results of pull tests with settings only slightly different from the standard
settings.

The large vertical drop (≈ 40 mils) from the CAMEX to the detector on the n-side

was near the maximum vertical range of the wirebonder. This posed a serious threat to

the operation of the SVX. If the wirebonds were ‘pinched’ at the edge of the CAMEX chip,

electrical contact between the wire and the CAMEX substrate created inoperable channels.

The wirebonding protocol was altered to ensure that all wirebonds were clear of the CAMEX.

Optimally adjusted, the clearance between the wirebonds and the edges of the CAMEX on

the z-side ranged from 25 to 30 microns.

The rate of successfully connected channels was in excess of 99.9%. No detectors

were destroyed as a result of failed wirebonds. As far as we are aware, not a single channel

in the SVX has experienced failure due to faulty wirebonds to the detectors.
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7.1.3 Thermal Conductivity

Good thermal conductivity of the support structure is critical to the performance

of the SVX for two reasons. The first is that the epoxies used to hold the SVX together

begin to soften at 70-80◦C. The second is that the leakage current and noise of the silicon

detectors increase as a function of temperature.

The BeO used in the support structure has very high thermal conductivity compared

to any adhesive. With eight glue joints along the heat path, minimizing the amount of

adhesive used and maximizing its thermal conductivity were important.

A test stand was built to verify the thermal conductivity of EG765 from A.I Tech

and explore the possibility of producing our own diamond-filled epoxy to avoid the high cost

of EG765. This stand had test units for parallel testing of four samples. A single test unit

is depicted in Figure 7.4 and consisted of two copper blocks glued together with a gap of

known thickness and cross section. A 10W resistor applied known power to one block while

Ice bath

Cu

Cu

Temperature probes

Resistor

Glue Joint

Heat sink

Insulation

Figure 7.4: A drawing of the apparatus used to test the thermal conductivity of various
adhesives.

the other block was placed in an ice bath. Measuring the temperature drop across the gap

allowed a calculation of thermal conductivity to a precision of 10-25%, depending on the

properties of the adhesive and the thickness of the glue layer.

During testing, it was discovered that the stated design specification of 11W/(m-
◦K) for EG765 could only be met at glue gaps similar to the size of the diamond dust used
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to fill the epoxy. At such gaps, all heat flows through diamond particles bridging the entire

gap. At the larger gaps called for in the support structure thermal conductivity approached

1W/(m-◦K).

Thermal conductivities of 1.5W/(m-◦K) were achieved filling West Systems epoxy

(resin 105, hardener 206)h with large amounts of diamond dust. However, strength suffered

at the higher filling ratios necessary (≈ 30%). A commercially available boron-nitride filled

epoxy achieved the advertised conductivity of 3.3W/(m-◦K) at a wide variety of glue gaps,

but the paste-like consistency of this adhesive, with large chunks of boron nitride, was unac-

ceptable for gluing hybrids together. Slightly over-thick glue layers caused hybrid cracking

when the fixture (described later) was tightened to achieve the proper overall thickness. Sil-

ver epoxy achieved 1.5W/(m-◦K) and was thin enough to use for the large area glue joints

between hybrids. This layer also formed a ground plane for each hybrid pair.

It was not possible to use the silver epoxy for hybrid-to-endpiece glue joints. The

conductive epoxy would have shorted exposed traces on the surfaces of the hybrids. By filling

West Systems epoxy with boron nitride powder, we produced our own electrically insulative

epoxy with a thermal conductivity in excess of 2W/(m-◦K).

7.1.4 High-yield Assembly Process

The planned rate of spare, good-quality detectors and hybrids was 25%. By keeping

the yields in the assembly process high, we hoped to assemble ten functioning octants in the

case that spares were needed for testing or replacement. Since the typical rate of spare

detectors for construction of a silicon vertexing detector is closer to 50%, it was clearly a

challenge to achieve this high yield. The primary ingredient to success was the strict testing

regimen and the modular approach of the construction process.

The octant is the main modular unit of the SVX. The hierarchy of sub-units within

an octant is shown in Figure 7.5. This not only simplified and accelerated construction,

but allowed for careful electronic and mechanical testing of each module before committing

it to other modules and further processing. The following sections summarize each step in

this process, from the assembly of individual parts to the insertion of the octants into the

carbon-fiber housings.

hGougeon Brothers Inc., Bay City, Mi.
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Assembly

Layer 2 Hybrid

Layer 1 Hybrid

L2 Hybrid-Hybrid

Layer 2 Hybrid

Octant
(8 required, 2 spares)

(4 required: 2 East, 2 West)

Layer 3 Detector Assembly

Layer 3 Hybrid Assembly

Outer Beam Assembly

Inner Beam Assembly

Outer Support Beam

Inner Kevlar
Beam
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BeO Endpiece
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Assembly
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(2 required: 1 East, 1 West)
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Figure 7.5: The hierarchy of modules within an octant. Each outlined module underwent
testing before bonding to other modules. Glue bonds are shown as lines between modules.
Those shown as dashed lines used the platens for positioning, while those requiring special
fixtures are shown as solid lines.
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7.2 Detector-hybrid Assemblies

The detector-hybrid assembly is basic functional sub-unit of the SVX. Each consists

of one or two silicon detectors and a pair of hybrids. The steps involved in producing a

detector-hybrid assembly were:

• testing and assembly of detectors,

• testing and assembly of hybrids,

• detector-hybrid glue bonding,

• detector-hybrid wirebonding,

• detector-hybrid testing and burn-in.

The following subsections describe the details of these steps.

7.2.1 Silicon Detectors

The silicon detectors were received from Hamamatsu Photonics along with lists of

pinholes for each detector. Detectors then underwent the following set of processes:

• inspection and mechanical survey,

• electronic testing (at Cornell),

• edge bonding of layer three detectors.

Inspection and mechanical survey

Each detector was inspected and surveyed using the optical microscope. The pur-

pose of the mechanical survey was twofold. The first was to check for obvious defects such as

broken traces or defective passivation. In some cases bias traces were broken, a defect ren-

dering the detector inoperable. In other cases, defects in passivation indicated substandard

processing, which could lead to higher noise and pinhole rates. The second purpose was to

measure the position of the sense strips relative to the edges of the detectors. The positions

of the sense strips on all detectors were catalogued as the SVX was built up by surveying

the visible edges of the detectors after each assembly step.
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Table 7.3: A small subset of survey results from layer one east and layer two silicon detectors.
Note that the ‘active centers’ are similarly displaced for the ten surveyed detectors of each
type.

Parameter Nominal(µm) (Measured−Nominal)(µm)
Thickness 300µm −1 ± 2 µm
Layer 1

r-φactive length 21,168 −1.8 ± 0.8
r-φactive center 11,284 12.2 ± 2.2
r-φangle 0 −7 ± 5µrad
z active length 59,535 −9.2 ± 1.6
z active center 35,032.5 −11.5 ± 2.2
z angle 0 50 ± 34µrad

Layer 2
r-φactive area 28,614 −1.7 ± 0.5
r-φactive center 15,064 16.4 ± 3.5
r-φangle 0 9.2 ± 58µrad

z active length 76,356 −5.2 ± 1.7
z active center 42,392 −12.6 ± 3.3
z angle 0 12 ± 109µrad

These surveys showed that the pitch of the sense strips accurately reproduced the

design specification to within several microns over the entire length and width of the sense

regions. Meanwhile, the sense areas were similarly shifted on all detectors of the same type,

allowing adjustment of the fixtures to more accurately place the sense regions. Table 7.3

shows typical values for the misplacement of the sense areas of the detectors. All features on

the detectors were measured relative to a ‘reference corner’ that was defined by the fixturing

method used for the silicon detectors and detector-hybrid assemblies. This method and the

resulting reference corner are depicted in Figure 7.6. Using this corner as the origin for all

surveys provided the highest possible precision of the assembly and surveying process.

Two interesting details of the silicon detectors were discovered during surveying.

The first was a bevel in the cut edges of the silicon. This bevel resulted in the appearance that

the r-φ side was shorter and narrower than the z side by ≈ 5µm when held flat by the vacuum

chuck on the microscope stage. The second was that the silicon detectors were not flat. The
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Fixture

Hybrid

positioning pins

Detector
corner
reference

Figure 7.6: A diagram showing the method used to fixture the silicon detectors for glue
processes. The three positioning pins defined a natural ‘reference corner,’ which served as
the origin for all assembly and surveying of the detectors.

lengthwise sagitta of a layer one (layer two) detector was approximately 17±2µm(31±5µm).

The widthwise sagitta of the detectors was consistent with zero.

Electronic testing

At Cornell University, each silicon detector underwent a series of tests known as

the sidev-battery, or ‘s-battery.’ These included a cross-check of the pinhole lists and tests

of readout strip capacitance. The latter was capable of identifying discontinuities in the

readout and sense strips with no bias voltage applied, as well as the onset of full depletion,

by examination of the capacitance vs. bias voltage curve. Capacitance increases with bias

voltage until full depletion occurs, after which capacitance remains constant despite increases

in bias voltage. Typical full depletion voltage for the detectors was 60V.

Edge bonding of layer three detectors

Two detectors were bonded end-to-end with no overlap to produce the longer detec-

tor assemblies for layer three. Because both detectors are read out through the same strips, a

bad channel in the outer detector renders a perfectly functional channel on the inner detector

useless. A program was written to find the optimal set of detector pairs, the one with the
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maximum number of matching dead channels. Approximately 40 layer three inner detector

channels were salvaged.

Several epoxies were tested for strength and purity. Strength testing was performed

by edge bonding two glass microscope slides. The best epoxies produced a bond stronger

than the slides themselves. Purity testing involved both laboratory testing by an independent

laboratory and application of various glues to the surface of an operational detector. Noise

on the channels underneath each sample was monitored carefully. Any increase in noise of the

adjacent channels indicated leaching of ionic impurities into the bulk silicon. TRA-DUCT

2112, a standard electronics adhesive, was used used for all glue joints involving the silicon

detectors.

A controlled amount of epoxy was deposited using a machined aluminum block

with a shallow groove. Epoxy was applied to the block and excess scraped off with a blade.

This left a controlled bead in the groove that could be transferred to the edge of a detector.

Assembly took place using an aluminum fixture with two halves whose separation was con-

trolled with a micrometer knob. Epoxy was applied to one detector, both were held to the

fixture by vacuum chuck and brought into contact under optical microscope to the proper

gap of 3 mils.

Scratches caused by fixturing of the silicon were found to create new pinholes.

Teflon r© tape was applied to the assembly fixtures to protect the silicon. The detectors with

an extra layer of silicon nitride passivation were much less susceptible to damage-induced

pinholes.

After glue-bonding, the readout channels of the detector assemblies were wire-

bonded together and RTV adhesive was added to protect the wirebonds.

7.2.2 BeO Hybrids

The BeO hybrids were received at Cornell University where initial testing was done

and Kapton r© flex circuits were attached. The Kapton r© was glued to the hybrids using RTV

adhesive. Wirebonds between the copper traces on the Kapton r© and the gold bond pads on

the hybrids were made using 1 mil aluminum wire. Wirebonds were then potted with RTV

adhesive for protection.

After delivery to UCSB, the hybrids underwent the following processes:

• mechanical survey,
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• electronic testing,

• hybrid-hybrid assembly.

Mechanical Survey

Mechanical survey of the hybrids verified two critical physical dimensions. The

first was the thickness of the hybrid in the central glue pad, where the hybrids attach to

the BeO support structure. Maintaining the design thickness of the hybrid assemblies was

critical since excess thickness anywhere in the support structure might use up the minute

clearance (< 1mm) between the layer one wirebonds and the beampipe. On average, the

hybrids were found to be 1–2 mils thicker than specified. Thicker hybrids were paired with

thinner ones to keep the glue gaps as consistent as possible. The second critical dimension

was the position of the CAMEX chips. Badly misplaced CAMEX chips make wirebonding

between the detectors and the CAMEXes difficult. In general, the precision achieved by

the hybrid manufacturer in the placement of the CAMEX was sufficient, although not to

the specifications of the design. One standard deviation in lateral CAMEX placement was

approximately 3 mils, or almost one bond pad of offset.

Electronic Testing

The most important testing of the hybrids was of the electronic performance. The

standard battery of tests was referred to as pedestals-gains-noise, or PGN, testing. The

hybrids were attached to data acquisition electronics and voltage was applied at the test

inputs of the CAMEX chips. The purpose was to produce a list of inoperable channels and

provide a baseline for the PGN of all CAMEX channels. Bad channels were not bonded

to the detector and changes in PGN tests were tracked carefully for each CAMEX as the

detector was assembled.

Hybrid-hybrid Assembly

There were two critical properties of the glue joint between hybrids pairs, thickness

and thermal conductivity of the bond. The fixture used for gluing hybrids consisted of

two pieces of machined aluminum that are bolted together to enforce the specified overall

thickness of the hybrid assembly. To achieve high thermal conductivity, a bond of largest
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possible surface area was required. This dictated careful deposition of a thin glue layer to

meet specified thickness without bubbles or excessive overflow. The solution was machining

rectangular windows in brass shim stock of varying thickness to create a stencil. Glue was

applied to the hybrid inside the stencil and a blade was used to level the glue layer to the

shim thickness.

7.2.3 Detector-hybrid Glue Bonding

Glue bonding of detectors to hybrids was performed using fixtures attached to the

platens. Both fixtures used vacuum chuck to hold the parts. Three precision stainless pins,

two along the side of the detector and one at the end, positied the silicon exactly as was

shown in Figure 7.6. Early attempts to use these fixtures resulted in damage caused by the

aluminum support pad and stainless positioning pins. These problems were eliminated by

applying Teflon r© tape to critical surfaces of the fixtures.

7.2.4 Wirebonding

Wirebonding of the readout channels to the CAMEX inputs was the final step in

producing working detector-hybrid assemblies. Wirebonds between detectors and hybrids,

and between detectors in layer three were produced at UCSB. After setting up the wirebonder

according to a standard worksheet, all channels without known pinholes were wirebonded.

The typical time to wirebond a single CAMEX (63 channels) to the detector was twelve to

twenty minutes depending upon the operator.

7.2.5 Testing and Burn-in

After assembly was complete, each detector-hybrid was subjected to careful testing.

PGN testing was repeated to provide a baseline for each assembly. If new pinholes were

discovered, the part was sent back to the wirebonding station where the bonds to pinhole

channels were removed.

A computer controlled test stand was developed to test the response of each channel

to infrared light. A pulsed infrared LED was mounted on a platform positioned by stepper

motors. A programmed sequence pulsed each channel with penetrating infrared light, mea-

suring the response of each channel on both sides of the detector.
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Detector-hybrid assemblies were stored with CAMEX power and bias voltage ap-

plied until assembled with the support structure. Special fixtures and cabinets were built

to provide power, monitor voltages and currents and keep the assemblies in a dry, dark

environment. Pinholes resulting from this burn-in were identified by a final PGN test and

disconnected from the CAMEXes at the wirebonding station. After all testing was completed,

wirebonds were potted for protection using an RTV adhesive.

7.3 Octant Assembly

Completed detector-hybrid assemblies were mated to the support structure to create

the octants to be inserted into the carbon fiber housings. The steps in completing an octant

were

• assembly of support beams (inner and outer),

• attachment of detectors to support beams (inner and outer),

• final octant assembly.

7.3.1 Support Beam Assembly

Before attachment of the detector-hybrid assemblies, the BeO endpieces were mated

with the Kevlar U-channels to produce finished support beams. The steps in assembly of the

support beams were

• production and surveying of BeO endpieces,

• production and surveying of Kevlar r© U-channels,

• glue-bonding of endpieces to U-channels.

BeO Endpieces

The fabrication of the BeO supports was contracted to the Ceradyne Corporationi.

Following delivery, all BeO endpieces were subjected to careful surveying of critical dimen-

sions. As with the hybrids, the radial thickness is critical due to the tight clearances between

iCeradyne Corp., Costa Mesa, Ca.
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the layer one wirebonds and the beampipe. Although all pieces were within tolerances, some

were returned to Ceradyne for machining. This was done because the hybrids tended to be

one to two mils thicker than designed. The brass sleeves were glued into the outer endpieces

to accept the pins and screws that attach the octants to the carbon fiber housings.

U-channels

All Kevlar r© U-channels were produced at UCSB. Molds were machined from alu-

minum and the layup was three layers; two layers of woven Kevlar r© fabric sandwiched around

a thin Kevlar r© mat. West Systems epoxy completed the composite.

The beams were then machined to remove excess material and machine the win-

dows added for wirebond clearance and material reduction. The abrasiveness and high tear

strength of Kevlar r© is very destructive to conventional machine tools and produces a raggedly

finished edge. Laser machining of the beams by LaserFabj was necessary to produce cleanly

cut edges.

The removal of significant material relieved internal stresses inherent in the U-

channels, causing warping of the beams. To reduce this warping, the parts were placed in

the molds and recured. Slow, controlled heating and cooling allowed the epoxy to soften and

recure in the desired shape.

Support Beam Glue-bonding

The inner and outer support beams were glue bonded to the BeO endpieces using

special aluminum fixtures designed for this task. An inner support beam consisted of two

inner endpieces and an inner U-channel. An outer support beam consisted of two middle

endpieces and two U-channels, one for each outer sub-layer. In both cases, all parts were

fixtured and glued simultaneously.

7.3.2 Attachment of Detector-hybrid assemblies

Detector-hybrid assemblies were attached to the support beams in east-west pairs.

The detectors were glued to the U-channels with TRA-DUCT 2112 and the hybrids were

glued to the BeO endpieces with our thermally conductive adhesive. Only small dots of glue

were placed at 2mm intervals along the U-channel to attach to the silicon. This ensured the
jLaserFab Corp., Concord, Ca.
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smallest possible amount of material, the lowest exposure of the silicon to the glue and the

possibility of removing a detector-hybrid assembly if necessary. After each set of detectors

was attached, the positions of the detectors were measured relative to one another to build

the survey of the finished octant.

For the inner beam assembly, layer one detector-hybrids were attached to the sup-

port beam first. This assembly remained in the fixture for the layer one detector-hybrids,

and the layer two detectors were attached. Since the layer one detectors were never removed

from their fixture, very high relative positioning of layer one and layer two was possible.

After layer two detector-hybrids were attached, the assembly again remained in the fixture

that initially held the layer one detectors.

For the outer beam assembly, the inner sub-layer for layer three was attached first.

This assembly remained in the fixture for the support beam. The outer sublayer was then

attached. Finally, the outer support beam was mated with the outer endpieces, with the

assembly remaining in the fixture for the endpieces. This fixture ultimately held the finished

octant.

7.3.3 Octant Assembly

Once all detectors were attached to the support beams the inner and outer beam

assemblies were joined together. They connect only at the support structure, simplifying

this step.

All visible corners and edges of the detectors were measured. Although some refer-

ence corners and edges were obscured during surveying, those still visible were sufficient to

completely constrain the positions of all sensitive regions of the detectors.

Each detector in the octant was subjected to the standard PGN tests to form a

baseline for the performance of all CAMEX channels in that octant. When this testing was

complete the octant was ready for insertion into the carbon fiber housing

7.4 Final Assembly and Transport

Complete octants were placed, four each, inside the two semi-cylindrical carbon fiber

housings. The housings, with extensions mounted, were mated around the new Be beampipe

at Cornell, and the entire assembly was then inserted through the rest of the CLEO detector
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from the end. Before commitment of the octants to the housings, the strength of these pieces

were carefully tested. Finite element analysis was used to estimate the deformation of the

completed housing under load. This unit was also tested under an actual load to ensure that

it was capable of supporting the shields.

The overlaps between detector octants created very tight clearances between detec-

tors of adjacent octants. To perform the delicate task of positioning the octants in the CF

housings, a motorized assembly machine was built. This machine held the semi-cylindrical

carbon-fiber shells on a motorized, rotating mount. By rotating and lowering the carbon

fiber, it could be positioned for vertical insertion of each octant.

The octant to be placed was held stationary and the housing is lowered from above

and into position against the octant. The octant was attached by hand with the positioning

pins and screws. Multiple lowering and rotating steps were required insert an octant with

an already-installed overlapping neighbor.

The detector was crated for transport via Emery Air Freight. The crate was in-

strumented with several shock detectors and a chart recorder to measure acceleration during

transport. Within minutes of leaving UCSB, the SVX experienced a severe shock. It is most

probable that this was due to the crate being improperly tied down in the delivery truck.

Upon inspection at Cornell, it was discovered that a layer one detector became separated

from the U-channel. A small chip was also missing from the detector. No electronic failures

or mechanical instabilities appear to have resulted from this damage.
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Detector Performance

The detector was installed during October 1995 and first took data on October 29,

1995. An event display of an early Bhabha (e+e− → e+e−) event is shown in Figure 8.1. As

of October 6, 1998, the detector has collected 7.5 fb−1 of total luminosity.

The adjusted total radiation dose through August 9, 1998 is shown in Figure 8.2.

The adjusted dose represents an attempt to estimate the damage seen by layer one CAMEX

chips and is defined as

Adjusted dose = (Power-on dose) + 0.3 × (Power-off dose). (8.0.1)

The doses at which we expect performance degradation and complete failure are shown. In

July, some CAMEX channels in layer one were observed with increased noise and decreased

efficiencies. It is thought that this degradation indicates the onset of radiation damage to

the SVX.

After much work in eliminating noise in the SVX, the S/N ratio in all detectors are

within acceptable limits. The S/N on the r-φ (p) and z (n) sides of the SVX detectors are

shown in Figure 8.3. The pulse height distributions shown in Figure 8.4 show the pulse heights

from tracks at normal incidence in the detector. The distribution, a Landau convoluted

with the incoherent noise, shows that the detectors efficiently collect the electron-hole pairs

produced by the passage of charged particles.

There are three main classes of bad channels in the SVX. The first is non-functioning

CAMEX channels. Most of these channels were non-operational at the time of installation.

123
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CleoXD
Run: 78659 Event: 8411

Figure 8.1: A display of an early e+e− event in the SVX. The hits in the SVX are shown but
were not used to fit the tracks shown. Some misalignment of the entire SVX with respect to
the VD is apparent.



125

CLEO II.V SVX Radiation Dose (thru 8/9/98)
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Figure 8.2: A plot of the adjusted radiation doses of the layer one detectors. Adjusted dose,
defined in the text, provides a rough measure of the expected lifetime of the SVX. Radiation
is measured by monitors mounted near the layer one CAMEX chips of each octant.
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Signal to Noise Distributions for rφ
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Figure 8.3: A plot of the signal to noise ratios for the r-φ and z sides of the three SVX layers.
For most hits the noise is within acceptable limits.

However, some recent failures are thought to be due to radiation damage. The second class

are pinhole channels. Again, most of these were faulty at installation, although some new

pinholes have developed over time. The third class is entire detectors that have become non-

functional. It is thought that these failures are due to the wirebonds between the hybrids

and the Kapton r© flex circuits.

These wirebonds, produced at Cornell with 1 mil aluminum wire, are extremely

difficult to create reliably, but critical to the operation of the hundreds of channels on each

detector. Both the Kapton r© itself and the RTV used to glue the flex cable to the hybrid

are very soft. Our experience at UCSB shows that this substrate tends to absorb much of

the ultrasonic energy that creates the wirebond. In addition, the metallization on the flex

cables are copper: creating a good weld to copper with the softer aluminum wire is quite

difficult. In retrospect, redundant wirebonds between the Kapton r© cables and the hybrids

would have been the best solution. The large size of the bond pads would easily have allowed

for several connections for each signal to the hybrid.

Regardless of the unusable channels, the efficiency for detecting the passage of a

charged track is quite high. The inefficiencies are shown in Figure 8.5 and are roughly



127

SVX Pulse Height Distributions
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Figure 8.4: A plot of pulse heights on the r-φ and z sides of the silicon detectors. The
Landau distribution is convoluted with the gaussian distribution of white noise. As expected
the noise is larger on the z-side.
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consistent with those expected from the number of bad channels.

The intrinsic resolutions (no multiple scattering) for tracks as a function of angle

of incidence are shown in Figure 8.6. The resulting resolutions on the position of the CLEO

interaction point for high momentum tracks are 39 and 45 µm in r-φ and z respectively.

Figure 8.7 shows clearly that the SVX can be used produce cleaner samples of D decays than

was previously possible with the CLEO detector. As our understanding of the subtleties of

the CLEO II.V datasets improves, the data will produce some striking new results in the

physics of B and D mesons and τ leptons.
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Inefficiencies by Layer
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Figure 8.5: Plots of the efficiencies for detection of charged tracks by the various segments
of the SVX. The notations w and e refer to the detectors on either side of the interaction
point in z. The points (top numbers with errors) are the calculated efficiencies while the
histogram (bottom numbers) are the expectations based on the rate of unused channels.
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rφ Intrinsic Resolution vs φ Incidence Angle

φ Incidence Angle (degrees)

R
es

ol
ut

io
n 

(µ
m

)

0

20

-40 -20 0 20 40

z Intrinsic Resolution vs Cos(θIncidence)

Cos(θIncidence)

R
es

ol
ut

io
n 

(µ
m

)

0

20

40

0.4 0.6 0.8 1

Figure 8.6: A plot of the single-hit resolutions for the SVX as a function of incidence angle
for high-momentum tracks. Tracks with higher angles of incidence spread their charge over
a larger number of readout strips.
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Before and After Vertex Cuts

Figure 8.7: A plot of K+π−π− mass with (right) and without (left) the requirement of a
separated vertex using the SVX. The bins are 2.5 MeV in width.
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