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The Large Area Telescope (LAT), Fermi's main instrument, is providing a new view of the local energetic pulsar population.

- Space Telescope In addition to identifying a pulsar origin of a large fraction of the bright unidentified Galactic EGRET sources, the LAT
\' results provide a great opportunity to study a sizable population of high-energy pulsars.
Correlations of their physical properties, such as the trend of the luminosity versus the rotational energy loss rate, help
identify global features of the gamma-ray pulsar population. Several lines of evidence, including the light curve and
spectral features, suggest that gamma-ray emission from the brightest pulsars arises largely in the outer magnetosphere.

Since the launch of the Fermi satellite and during its first six months of data taking.in_survey jmode_the pulsarpopulation discovered in thesgaptma-ray sky is/rown as far
as 46 objects. All their features and a first study of the new population are summarized in ‘Thg First Fermi Large Area Telescope Catalog of Gamma-ray Pulsdrs’ [1].

Fermi data were analyzed to search for pulsations using 762 contemporaneous ephemerideg obtained from radio telescopes and 5 from X-ray telescopesfA.groug of
of these ephemerides come from a list of good candidate gamma-ray pulsars‘selected with spin-down power greater than 1034 erg s*!. The res e ephemeridesiis a
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Gamma-ray luminosity L \\\sus the rotational energy loss rate E
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A uniform phase-averaged beaming across the sky (f,=1) is assumed. For the Crab is also
plotted the total high energy luminosity, L, = Ly +L. Empty markers refer to distances

evaluated with the DM method. Two markers connected with dashed errors bars are for
pulsars with an assumed range of distances . Blue squares: gamma-selected psrs. Red
triangles: MSPs. Green circles: all other radio loud gamma-ray psrs.
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