O. Celik (NASA-GSFC/CRESST-UMBC), F.Gargano (INFN-Bari), T.Reposeur (CENBG) on behalf of the Fermi Large Area Telescope Collaboration

We report here the results obtained from the analysis of 9 months of Fermi-LAT data on three EGRET pulsars. The excellent sensitivity of Fermi-LAT allowed us to perform a detailed analysis of the light curves and spectra for these pulsars and test past claims regarding unique features of these pulsars based on EGRET observations.

Abstract

The Fermi-LAT data have confirmed the pulsed emission from all six high-confidence gamma-ray pulsars previously known from the EGRET observations. We report results obtained with the analysis of 9 months of LAT data for three of these pulsars: J1057-5526 (B1055-52), J1709-4429 (B1706-44), and J1952+3252 (B1951+32). Each of these pulsars had some unique feature among the EGRET pulsars. With the excellent sensitivity of LAT, it was possible to perform a more sensitive light curve and spectral analysis to investigate these features with higher statistics. Moreover, the broader energy range of the LAT allowed us to measure the cutoff energy of pulsed emission from these pulsars for the first time and provided a more complete picture of the emission mechanism. The results confirm some, but not all, of the features of the EGRET results.

Timing Analysis

Data collected from June 25, 2008 up to May 1st, 2009 are included.

- Events with energies > 100 MeV are used for temporal analysis Events are selected from an energy dependent ROI: $\min \left\{1.0^{\circ}, \max \left[0.35^{\circ}, 0.8 \times\left(E_{\text {Gev }}\right)^{-0.8}\right]\right\}$
The pulse profiles are constructed for the full energy band >0.1 GeV and 3 separete energy bands, $0.1-0.3 \mathrm{GeV}, 0.3-1.0 \mathrm{GeV}$ and $>1.0 \mathrm{GeV}$. The energy band $>3.0 \mathrm{GeV}$ is also shown as filled histogram superimposed on the highest energy band
- The results are reported in "The first Fermi-LAT Catalog of Gamma-ray pulsars" ${ }^{[1]}$ submitted on astro-ph.

PSR J1057-5226

$\mathrm{P}=197 \mathrm{~ms}, \mathrm{P}^{\prime}=5.83 \times 10^{-15}, \quad$ Age $=535 \mathrm{kyr}, \mathrm{E}_{\mathrm{sD}}^{\prime}=3.01 \times 10^{34} \mathrm{ergs} \mathrm{s}$
Timed by Parkes ${ }^{[5]}$ radio telescope, the radio template is shown on the bottom panel - Residual RMS $=159 \mu \mathrm{~s}$.
-There are 5 photons $>5.0 \mathrm{GeV}$ in the on-pulse region, with a highest energy of 7.9 GeV .

- The pulse profile shows one broad peak with a complex structure between $\varphi=0.25-0.65$ with a mean at (0.45 ± 0.02). The radio lag is 0.35 ± 0.05.
The pulse shape can be fitted with two half-Lorentzian functions for the tails with a flat top.
Peak-like features seen in the lowest energy band.
EGRET light curve shows two close-peaks as opposed to the one broad peak seen with the LAT data

PSR J1709-4429

- $P=102 \mathrm{~ms}, P^{\prime}=9.3 \times 10^{-14}$, Age $=17.5 \mathrm{kyr}, E_{\text {sD }}^{\prime}=3.41 \times 10^{36} \mathrm{ergs} \mathrm{s}^{-1}$ A glitch detected from this pulsar on August 14th, 2008 from analysis of the LAT data
Timed by Parkes ${ }^{[5]}$ radio telescope, the radio template is shown on the bottom panel- Residual RMS $=505 \mu \mathrm{~s}$.
- There are 45 photons $>10.0 \mathrm{GeV}$ in the on-pulse region, with a highest 47.7 GeV

The pulse profile shows two close broad peaks, separated by 0.25 ± 0.01 $=0.17-0.63$. The radio lag is 0.24 ± 0.01
-The peaks can be fitted by two asymmetric Lorentzian shapes

- A third peak-like feature is seen at different locations on different energy bands EGRET could not distinguish between a 2-peak or 3-peak shape for the
light curve of this pulsar as opposed to clear 2-peak shape seen with LAT.

PSR J1952+3252
$P=39.5 \mathrm{~ms}, \mathrm{P}^{\prime}=5.84 \times 10^{-15}$, Age $=107 \mathrm{kyr}, \mathrm{E}_{\mathrm{sD}}^{\prime}=3.74 \times 10^{36} \mathrm{ergs} \mathrm{s}$

- Timed by Nancay ${ }^{[8]}$ radio telescope, the radio template is shown on the bottom panel - Residual RMS $=117 \mu \mathrm{~s}$.
- There are 8 photons $>10.0 \mathrm{GeV}$ in the on-pulse region, with a highest energy of 25.7 GeV .
The pulse profile shows two narrow peaks separated by 0.49 ± 0.01, with an on-pulse region between $\varphi=0.1-0.7$, the radio lag is 0.15 ± 0.01
The first peak can be fitted with a symmetric Lorentzian, whereas the second peak can be fitted with an asymmetric Lorentzian shape.
- A third peak-like feature is seen at the inner shoulder of P2

EGRET and LAT pulse shapes are similar

Spectral Analysis

- Data collected in sky-survey mode are used: August 4th, 2008 - May24th, 2009 -Events from a 10 deg ROI are used.

PSR J1057-5226
Phase Averaged Spectra
$\mathrm{F}(>100 \mathrm{MeV})=(3.045 \pm 0.17) \times 10^{-7} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Index $=(1.06 \pm 0.10)$
CutOff $=(1.3 \pm 0.1) \mathrm{GeV}$
Power Law is excluded by $\sim 19 \sigma$
Phase Resolved Spectra

- No emission is detected outside of $\varphi=(0.25-0.65)$
- Spectral index is higher in the first peak
- CutOff energy is approx. constant over pulsed region

PSR J1709-4429
Phase Averaged Spectra
(1.498 +0.041$) \times 10^{-6} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

Index $=(1.70 \pm 0.04)$
CutOff $=(4.9 \pm 0.4) \mathrm{GeV}$
Power Law is excluded by $\sim 19 \sigma$, Broken Power Law by $\sim 5.6 \sigma$
Phase Resolved Spectra

- No emission is detected outside of $\varphi=$ (0.17-0.63) CutOff energy varies drastically over the pulsed region up to
max cutoff energy of (6.96 ± 1.7) GeV

PSR J1952+3252

Phase Averaged Spectra
Index $=(1.75 \pm 0.12)$
CutOff $=(4.5 \pm 1.2) \mathrm{GeV}$
Power Law is excluded by $\sim 6 \sigma$
Phase Resolved Spectra

- No emission is detected
- No emission is detected

The second peak has a larger cutoff than the first peak region

- Fermi Science Tools, gtlike
IRFs: Pass6 v3

IRFs: Pass6 v3
Considered nearby sources in ROI of 17 deg Considered nearby sources in ROI of 17 deg
modeling their spectral with Power Law Galactic \& extra-galactic diffuse backgrounds gll_iem_v02.fit and isotropic_iem_v02.txt

- Pulsars in ROI are modeled with "Power Law with Simple Exponential Cut-off" given by:
$d N / d E=K\left(E_{G e V}\right)^{-\Gamma} \exp [-(E / E$
ECPL 1 shape of the spectrum assumption for the pulsar ECPL1 shape of the spectrum assumption for the pu

Discussion
Minimum Emission Altitude: $\mathrm{r}>\left(\mathrm{E}_{\max } \mathrm{B} / 1.76 \mathrm{GeV}\right)^{2 / 7} \mathrm{P}^{-1 / 7} \mathrm{R}_{*}{ }^{[2]}$
PSR J1057-5226: $\mathrm{E}_{\text {max }} \sim 2 \times \mathrm{E}_{\text {cutoff }}=2.6 \mathrm{GeV} \mathrm{max}_{\rightarrow} \mathrm{r}>1.45 \mathrm{R}$
PSR J1709-4429: $E_{\max }^{\max } \sim 2 \times \mathrm{E}_{\text {cutuoff }}=9.8 \mathrm{GeV} \rightarrow r>3.2 R$
PSR J1952+3252: $E_{\max } \sim 2 \times E_{\text {cutoff }}=9.0 \mathrm{GeV} \rightarrow r>2.1 R$,
Geometry: Using the measured Δ and ζ and predicted geometry by [11]

	Δ	$\zeta_{\text {meas }}\left({ }^{\circ}\right)$	$\alpha_{\text {TPC }}\left({ }^{(}\right)$	$\zeta_{\text {TPC }}\left({ }^{(}\right)$	$f_{\Omega, \text { TPC }}$	$\alpha_{\text {OG }}\left({ }^{\circ}\right)$	$\zeta_{\text {oc }}\left({ }^{\circ}\right)$	$f_{\Omega, 06}$
J1057-5226	0.20	67	60	50	0.85	78	67	0.55
J1709-4429	0.25	53	$45-50$	53	1.05	$47-49$	53	$0.7-1.0$
J1952+3252	0.49	-	$55-90$	$55-90$	$1.0-1.25$	$60-90$	$70-85$	$0.75-1.1$

Luminosity and Efficiency: $L_{y}=4 \pi f_{\Omega}\left(\alpha, \zeta_{E}\right) d^{2} F_{E, \text { obs }} \quad \eta=L_{V} / E_{\text {sd }}^{\prime}$ PSR J1057-5226: $d=(0.7 \pm 0.2) \mathrm{kpc} \rightarrow \mathrm{L}_{\mathrm{y}}=(1.7 \pm 0.9) \times 10^{34} \mathrm{f}_{\mathrm{f}}$ ergs s $^{-1} \quad \eta=0.56 \pm 0.31 \mathrm{f}_{\Omega}$

$\eta=0.09-0.57 \mathrm{f}_{\Omega}$ PSR J1952 $+3252: \mathrm{d}=(2.0 \pm 0.6) \mathrm{kpc} \rightarrow L_{V}=(6.4 \pm 3.2) \times 10^{34} f_{\rho}$ ergs s $\mathrm{s}^{-1} \quad \eta=0.02 \pm 0.01 \mathrm{f}_{\Omega}$

Conclusions

- The high cutoff energy of pulsed emission for all three pulsars \rightarrow low altitude emission models are excluded ${ }^{[3]}$ and high altitude models like Outer Gap (OG) ${ }^{[7]}$ or two-pole caustic (TPC) ${ }^{[4]}$ models are favored.
Both OG and TPC models offer a range of possible solutions for the emission geometry and agrees with the measured viewing angle, ?
-EGRET observations point to a very high efficiency for PSR J1057-5226 ${ }^{[9]}$, confirmed by these recent much more sensitive LAT measurements.
-EGRET did not see any evidence of cutoff for PSR J1952+3252 emission ${ }^{[6]}$, but LAT clearly measures a cutoff at 3.5 GeV .
-PSR J1709-4429 spectra was best fitted by Broken Power Law shape using EGRET data ${ }^{[10]}$, LAT data favors Power Law with Simple Exponential Cutoff but the fit is not dramatically different from a Broken Power Law.

