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Abstract

In recent years, SLAC’s Advanced Computations De-
partment (ACD) has developed the high-performance par-
allel 3D electromagnetic time-domain code, T3P, for sim-
ulations of wakefields and transients in complex accelera-
tor structures. T3P is based on advanced higher-order Fi-
nite Element methods on unstructured grids with quadratic
surface approximation. Optimized for large-scale parallel
processing on leadership supercomputing facilities, T3P al-
lows simulations of realistic 3D structures with unprece-
dented accuracy, aiding the design of the next generation of
accelerator facilities. Applications to the Compact Linear
Collider (CLIC) Power Extraction and Transfer Structure
(PETS) are presented.

CLIC PETS STRUCTURE

In the following, time-domain wakefield simulations of
the X-Band (12 GHz) CLIC PETS are presented. The
PETS is one of the two key components of the proposed
CLIC two beam scheme for high RF transfer efficiency:
A low energy, high current drive beam passes through the
passive PETS and supplies RF power to the main beam.

The PETS is a periodically loaded traveling wave struc-
ture with an active length of 21.3 cm (34 cells), a period of
6.253 mm (90◦/cell) and an aperture of 23 mm [1]. It is as-
sembled from 8 identical sectors separated by radial slots
with embedded lossy dielectric loads required to dampen
the transverse wakefields that would otherwise destroy the
drive beam quality.

The current CLIC design requires over 35,000 PETS
per Linac and careful design and optimization is critical
to the overall success of the project. Numerical simula-
tions are required to quantitatively investigate the wakefield
impedance from loading of the dielectric absorbers.

SIMULATION CODE T3P

In the following, a brief introduction to the employed
methods for modeling the electromagnetic fields generated
by a particle beam in an accelerator structure is given. The
simulation code T3P solves the full set of Maxwell’s equa-
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tions in time domain and includes retardation and boundary
effects first principles.

Maxwell Finite Element Time-Domain

In our approach, Ampère’s and Faraday’s laws are com-
bined and integrated over time to yield the inhomogeneous
vector wave equation for the time integral of the electric
field E:
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E dτ = −J, (1)

with permittivity ε=ε0εr and permeabilityµ=µ0µr. For
simplicity in the computations, a constant value of the ef-
fective conductivityσeff=tanδ ·2πf ·ε is assumed by fixing
a frequencyf , and the losses are specified by the loss tan-
genttanδ. As is common for wakefield computations of
rigid beams, the electric current source densityJ is given
by a one-dimensional Gaussian particle distribution, mov-
ing at the speed of light along the beam line.

The computational domain is discretized into curved
tetrahedral elements and

∫ t
E dτ in Eq. (1) is expanded

into a set of hierarchical Whitney vector basis functions
Ni(x) up to orderp within each element:

∫

t

E(x, τ) dτ =

Np
∑

i=1

ei(t) ·Ni(x). (2)

For illustration,N2=20 andN6=216. Higher-order ele-
ments not only significantly improve field accuracy and
dispersive properties [2], but they also generically lead to
higher-order accurate particle-field coupling equivalentto,
but much less laborious than, complicated higher-order in-
terpolation schemes commonly found in finite-difference
methods.

After accounting for boundary conditions at domain
boundaries, e.g. metallic cavity walls or symmetry planes,
and consistency between neighboring elements, a global
number of expansion coefficients is obtained, representing
the field degrees of freedom (DOFs) of the system.

Substituting Eq. (2) into Eq. (1), multiplying by a test
function and integrating over the computational domain
Ω results in a system of linear equations, second-order in
time. Partial integration leads to additional boundary terms.
The implicit Newmark-Beta scheme [3] is employed for
numerical time integration. It is unconditionally stable,



i.e. the largest allowable time step does not depend on the
smallest mesh size in the overall computational domain.
The resulting (parallelly distributed) matrix is factorized
either directly or iteratively using the conjugate gradient
approach with a suitable preconditioner. Currently, itera-
tive methods exhibit better parallel scalability and are the
preferred method for solving large problems.

At a given discrete timet, the electric fieldE and the
magnetic flux densityB are easily obtained from the solu-
tion vectore:

E(x) =
∑

i

(∂te)i ·Ni(x) (3)

and
B(x) = −

∑

i

(e)i · (∇× Ni(x)) . (4)

More detailed information about the methods used in T3P
has been published earlier [4].

T3P VALIDATION

For validation purposes, wakefields are calculated for a
simple synthetic test case with lossy dielectric material.
T3P results are compared with results from the well estab-
lished time-domain code MAFIA T2. The geometry is a
cylindrical pillbox (length and radius are both 6 cm) with a
beam pipe of 2 cm radius. An annulus with lossy dielectric
material properties (εr=15,µr=1,σeff=2/3) is placed in the
cavity. A Gaussian bunch ofσz=1cm is driven along center
of the beam pipe inz-direction, and the resulting longitu-
dinal wake potential is calculated using Weiland’s method
[5]. Since the problem is cylindrically symmetric, accurate
results are easily obtained with the 2D code MAFIA T2.

Figure 1 shows the mesh model used for T3P calcula-
tions in 3D, a 10 degree slice, and magnetic boundary con-
ditions are applied to enforce cylindrical symmetry. In both
codes, the computational mesh size and time step are cho-
sen to be small enough to reach convergence, and the mesh
in the absorber region is refined accordingly in order to be
able to resolve the smaller wavelengths. The beam pipe
is truncated at both ends with absorbing boundary condi-
tions. In order to reduce numerical boundary condition er-
rors, truncation is done far enough away from the cavity,
i.e. at several times the beam pipe radius.

Figure 2 shows the excellent agreement between T3P
and MAFIA T2 results.

T3P PETS MESH MODEL

All mesh-based electromagnetic time-domain simula-
tions depend on adequate discretization of the calculation
domain, particularly of the material boundaries, especially
when scattering phenomena are modeled. Simulation ac-
curacy generally improves with finer meshes and better
boundary approximations.

T3P is based on unstructured meshes of up to second-
order curved tetrahedral elements – this allows modeling

Figure 1: Unstructured conformal tetrahedral mesh model
of a 10 degree slice of the validation test case, as used for
calculations with T3P. The mesh is refined in the region of
the lossy material. The beam is about to leave the geometry
and the excited wakefields are visible.

Figure 2: Longitudinal wake potential for the lossy pill-
box validation case (ǫ=15, µ=1, σ=2/3). There is excel-
lent agreement between T3P and MAFIA T2 results, as ex-
pected from the cylindrically symmetric test case and the
convergence behavior of the codes.

of small geometric features and scattering effects with high
accuracy. In combination with higher-order field represen-
tation, highly efficient use of computational resources and
unprecedented simulation accuracy are obtained.

Figures 3 and 4 show detailed views of a high-quality
mesh model of the full PETS with 34 regular cells, 2 match-
ing cells, outer tank, and output coupler. A model of one
symmetric quadrant of the PETS requires roughly 9 mil-
lion tetrahedral elements, with an average mesh resolu-
tion of about 1 mm and down to 0.3 mm for the dielectric
loads (εr=24,µr=1), which require a locally refined mesh
for proper resolution of the smaller resulting wavelengths.
This mesh is used for most of the calculations performed
with T3P that are presented in the following.



Figure 3: External view of the unstructured conformal
tetrahedral mesh model of the PETS, used for T3P calcula-
tions. Visible are the beam pipe with several regular cells
and the matching cell, the output coupler as well as the
outer tank. The dielectric loads are highlighted in red. The
corresponding mesh region is locally refined for improved
resolution of the smaller resulting wavelengths.

Figure 4: Unstructured conformal tetrahedral mesh model
of the PETS, used for T3P calculations. From this view-
point close to the beam line axis, the curved cell irises, the
slots and the output coupler openings are visible.

T3P PETS WAKEFIELD CALCULATIONS

Using the aforementioned PETS model, wakefield calcu-
lations have been performed with T3P. Since the main inter-
est is on transverse wakefields, a Gaussian current is driven
along the beam pipe axis (thez-direction) with anx-offset
of 2.5 mm and beam parametersσz=2 mm,±3σz. This

is equivalent to a pure dipole current by enforcing electric
boundary conditions on theyz-symmetry plane. For sim-
plicity, the same basis orderp is used for all mesh elements
and the effective conductivity is calculated withf=12 GHz.

Figure 5 shows one half of the structure with a snap-
shot of the excited wakefields on the surfaces. The trans-

Figure 5: Snapshot of excited wakefields calculated by T3P
as the beam is about to leave the PETS. Electric cut plane
atx=0 excludes monopole modes. The magnetic symmetry
planey=0 is shown for visualization purposes, it includes
the beam with an offset ofx=2.5 mm. Strong damping
in the lossy dielectric loads (εr=24,tanδ=0.32) is directly
observed, as well as some fields in the output coupler and
choke.

verse wake potential is obtained from the longitudinal wake
potential by applying the Panofsky-Wenzel theorem [6],
which requires an integration of the longitudinal wake po-
tential.

Figure 6 shows the convergence of the transverse wake
potential as a function of the orderp of the Finite Element
basis functions.

Figure 7 shows the convergence behavior in frequency
domain, where the absolute value of the transverse
impedance (Fourier transform of the wake potential of a
point charge) is plotted instead. Results fromp=1 calcu-
lations are the least accurate and show differences to cal-
culations withp=2 andp=3, which are almost identical.
Results forp=1 are obtained within a few hundred CPU

hours, whilep=3 requires several tens of thousands of CPU
hours on massively parallel supercomputers (thousands of
CPUs). Results withp=2 require in the order of a few
thousand CPU hours and can be considered well converged
for purposes of this study. Consequently, all computations
with T3P are performed with Finite Element basis order
p=2 in the following.

Convergence in the field integration time step has been
observed as well, and a time step of 0.5 ps was required to
reach convergence forp=2. This corresponds to a spatial
resolution of hundreds of microns and allows modeling of
the smallest features in the geometry with high accuracy.
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Figure 6: Convergence of transverse wake potential as a
function of the orderp of the Finite Element basis functions
used in T3P calculations.
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Figure 7: Convergence of transverse impedance as a func-
tion of the orderp of the Finite Element basis functions
used in T3P calculations.

Figure 8 shows the effect of the lossy dielectric loads
by comparing the transverse wake potential with and with-
out losses (tanδ=0.32 vstanδ=0, c.f. Eq. (1)). The dielec-
tric properties and permeability of the absorber material are
kept constant, i.e.εr=24,µr=1). A drop of about one order
of magnitude in the wakefield amplitudes is observed after
about one active length if losses are enabled.

COMPARISON OF T3P AND GDFIDL

Finally, T3P results are compared to GdfidL results
[1]. GdfidL is a parallel electromagnetic time-domain
code based on the conventional finite difference scheme
on structured rectilinear grids. Similar to MAFIA, GdfidL
features first-order boundary approximation (cut-cells) and
first-order field representation.

For simplicity, the output coupler and the outer tank are
omitted for the comparison simulations. All other param-
eters remain the same, including beam and material prop-
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Figure 8: Impact of absorbers on the transverse wake po-
tential. The lossless case (tanδ=0) is compared to the lossy
case withtanδ=0.32.

erties. T3P calculations are performed with Finite Element
basis orderp=2.

Figure 9 shows the geometry of the simplified PETS
model.

Figure 9: Simplified PETS model without outer tank and
output coupler, for comparison simulations between T3P
and GdfidL.

Figures 10 and 11 show the transverse wake potentials
and impedances as calculated with T3P and GdfidL. Good
general agreement between the codes is found. GdfidL re-
sults show relative deviations from the T3P results (with
p=2), in magnitude and features comparable to the ones be-
tweenp=1 andp=2 in earlier T3P runs, while with slightly
different geometry (no coupler, no outer tank). This find-
ing is consistent with GdfidL’s general first-order approach
– further corroborating the applicability of our methods.
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Figure 10: Comparison of transverse wake potential calcu-
lated with GdfidL and T3P for the simplified PETS geom-
etry from Fig. 9.
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Figure 11: Comparison of transverse impedance calculated
with GdfidL and T3P for the simplified PETS geometry
from Fig. 9.

SUMMARY

SLAC’s parallel Finite Element 3D electromagnetic
time-domain code T3P employs state-of-the-art parallel Fi-
nite Element methods on curved conformal unstructured
meshes with higher-order field representation. T3P allows
large-scale time-domain simulations of complex, realistic
3D structures with unprecedented accuracy, aiding the de-
sign and operation of the next generation of accelerator fa-
cilities. T3P has been extensively benchmarked against es-
tablished codes. In this study, T3P has been used to cal-
culate transverse wakefield damping effects in the CLIC
PETS, which involves lossy materials and complex geo-
metric features. Thanks to access to large-scale compu-
tational resources, and due to the unique features of T3P,
convergence of the results could be achieved.
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