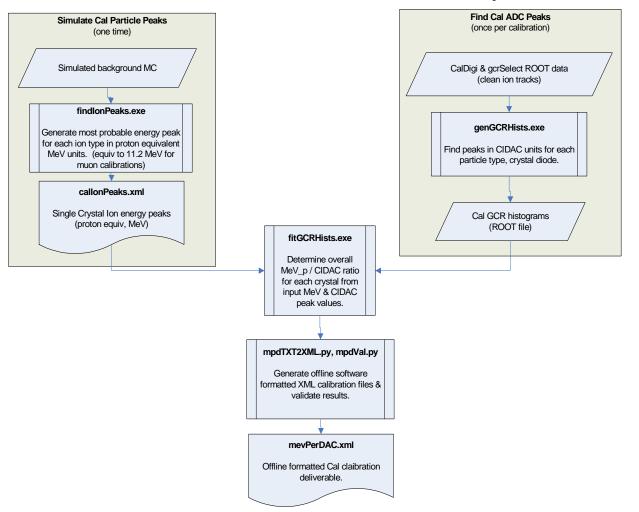
#### Scintillation Efficiency Corrections in Cal Software

Zach Fewtrell, NRL March 4, 2008

# Terms / Definitions

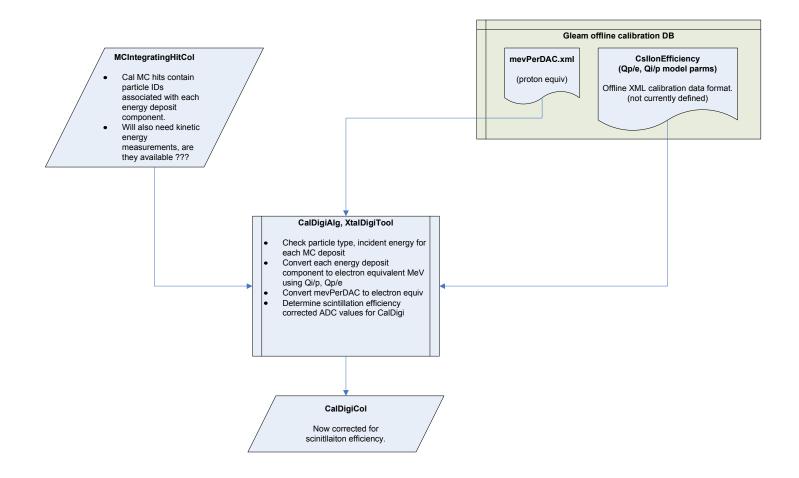
- scintillation efficiency
  - dL/dE
- Qp/e
  - proton\_efficiency / e-\_eff
- Qi/p (aka "quenching" or "antiquenching" factor)
  - ion\_eff / proton\_eff (evaluated for each z)
  - Equivalent to Qi/muon
- Qi/e = Qp/e \*Qi/p

# Terms / Definitions (...)

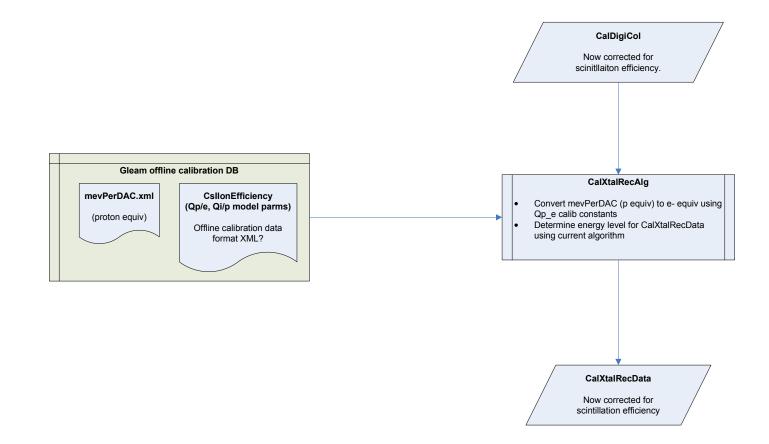

- CIDAC (DAC)
  - charge injection DAC scale (more linear than ADC scale)
  - Proportional to diode signal
  - One CIDAC scale per diode in cal (2 per xtal face)
- mevPerDAC (MPD)
  - Deposited\_ene / signal in CIDAC units
  - 2 MPD constants stored per Cal crystal (one for each diode size, geometric mean of both faces)
- mevPerDAC\_p, mevPerDAC\_e, mevPerDAC\_i
  - mevPerDAC in "particle equivalent" energy units

#### Decisions...

- Which mevPerDAC calibration to store as default?
  - Electron scale makes most sense for science analysis
  - Proton scale is effectively what we've been using so far as muon dL/dE is the same.
  - Either scale can perform all needed tasks, just an issue of conceptual clarity and displacing complexity to different processes.
- We decide to continue with mevPerDAC\_p
  - a large amount of infrastructure has been built around muon calibrations.
  - Allows us to continue to use older calibrations with the same code.


## **Related Software Packages**

- calibGenCAL
  - Handles all generation & analysis of Cal calibrations
- CalXtalResponse
  - Handles simulation and reconstruction of individual Cal crystals
- CalDigi
  - Control logic for simulation of all Cal digital output.
- CalRecon
  - Event level reconstruction for full Cal.




#### calibGenCAL Scintillation Efficiency Calibration

#### Cal MC/Digi Simulation Process (Gleam)



Cal Crystal Recon Process (Gleam)



### CalXtalResponse

- CalCalibSvc
  - Monolithic 'façade' for access to all Cal Calibrations.
  - Provides mevPerDAC\_p
  - Provides conversion model parameters for Qp/e, Qi/p
- XtalDigiTool
  - Responsible for simulation CalDigi output for single Cal Xtal.
  - Determine scintillation efficiency corrected ADC values
- XtalRecTool
  - Determine energy deposit level and centroid for individual crystals.
  - Only change is to convert mevPerDAC\_p -> mevPerDAC\_e using CalCalibSvc provided constants.

# CalDigi

- Control logic flow, TDS input & output for overall Cal digitization process
- Should not need major changes for new features
  - All calculations & corrections done @ individual crystal level within XtalDigiTool

#### CalRecon

- No code changes anticipated
  - CalXtalRecData will be in electron equivalent MeV
  - Recon algorithms may need reoptimization to account for new calibration

### Other calibrations

- Pedestals
  - Based off periodic trigger events, very little change from current software
- IntNonlin (CIDAC2ADC)
  - LCI (charge injection scripts) minor changes from current software
- Asymmetry
  - Same program (with minor mods) as currently used for muons, can use any clean ion track for calibration
- Thresholds (LAC,FLE,FHE,ULD)
  - Currently under development. Switching form LCI based data collection to calibration from particle data. Requires several new software components.

### **Modification Status**

| Component    | Package         | Resources<br>Required |
|--------------|-----------------|-----------------------|
| findlonPeaks | calibGenCAL     | 2 weeks               |
| genGCRHists  | calibGenCAL     | Complete              |
| fitGCRHists  | calibGenCAL     | 1 week                |
| CalCalibSvc  | CalXtalResponse | <sup>1</sup> ∕₂ week  |
| XtalDigiTool | CalXtalResponse | 1 week                |

# Modification Status (...)

| Component                | Package     | Resources<br>Required |
|--------------------------|-------------|-----------------------|
| Pedestal calibration     | calibGenCAL | complete              |
| IntNonlin<br>calibration | calibGenCAL | ½ week                |
| Asymmetry                | calibGenCAL | 1/2 week              |
| Thresholds               | calibGenCAL | 1.5 weeks             |