
SLAC Particle Physics &

Astrophysics

Using the RCE

as an FEE Simulator

RCE Training Workshop

Martin Kocian, kocian@slac.stanford.edu

June 16, 2009



Introduction

SLAC Particle Physics &

Astrophysics

• For DAQ development it is important to test the system under realistic

conditions.

• FE ASICS are often available only late in the game.

• It can be hard to get realistic data without collisions.

• To do a real test of the DAQ frontend simulators are crucial.

• The RCE can be used as a frontend simulator.

RCE FEE Simulator 2



Concept

SLAC Particle Physics &

Astrophysics

R
T

M

R
T

M

RCE

FE
FEController

FE R
T

M fiber

fiber

DAQ

DAQ

e.g.

e.g.

RCE

RCE

• The DAQ talks to the frontends through optical fibers.

• Idea: Replace FE by RCE.

RCE FEE Simulator 3



Possibilities

SLAC Particle Physics &

Astrophysics

• Simulate the ASIC behavior on the RCE in C++.

• Download data files to the RCE to be fed to the DAQ.

• Test frontend configuration.

• Test calibration software.

• Test data taking/trigger.

=⇒ Emulate frontend behavior in real time.

RCE FEE Simulator 4



Pixel FE with PGP

SLAC Particle Physics &

Astrophysics

FE interfaces

Linux

ATCA crate

R
C

E

R
T

M

FibersEthernet

Pixel ModulesC
IM

 (Sw
itch)

R
C

E

• Use Pixel FE with PGP from the previous session as an example on how one

could design a frontend simulator.

• Elements:

– PGP RCDI interface.

– HSIO (FPGA interface board) simulation.

– Frontend simulation.

• A straightforward way to emulate the hardware’s behavior would be to create

classes that correspond to these elements.

RCE FEE Simulator 5



RCDI Interface

SLAC Particle Physics &

Astrophysics

• Raw PGP is available through pgp driver on the RCE that emulates the

frontend.

• Write a handler class RCDIslave that implements the functionality of the

RCDI slave.

• To the DAQ RCE the FE RCE looks like the frontend vhdl RCDI slave.

• RCDI functionality:

– Register R/W.

– Command.

– Data.

• The following slides are suggestions for an implementation of the RCDI slave.

RCE FEE Simulator 6



Register Read/Write Block

SLAC Particle Physics &

Astrophysics

• RCDI slave has to respond to the master’s register read/write requests.

• Implementation through callback functions:

unsigned setRegister(unsigned address, unsigned value);

unsigned getRegister(unsigned address, unsigned& value);

• The return value would contain a user error and timeout to be returned to the

master RCE.

• The user (in this case the class that implements the HSIO functionality) would

implement the functions and register them with the RCDIslave.

RCE FEE Simulator 7



Command Block

SLAC Particle Physics &

Astrophysics

• RCDI slave has execute command requests.

• Implementation through callback function:

void executeCommand(unsigned char opcode, unsigned context);

• The command block does not reply to the master.

• Again the user (the class that implements the HSIO functionality) would

implement the function and register it with the RCDIslave.

RCE FEE Simulator 8



Data Block

SLAC Particle Physics &

Astrophysics

• RCDI slave can send data to the master.

• Implementation through a function of RCDImaster:

void sendData(unsigned char *buffer, unsigned bufferSize);

• The user (the class that implements the HSIO functionality) would call the

function.

RCE FEE Simulator 9



PGP Initialization

SLAC Particle Physics &

Astrophysics

• To use PGP:

– Define transmit buffer parameters.

– Create a pool of transmit buffers.

– Get the pgp driver for the desired lane from the system.

– Register your handler with the driver.

const RcePic::Params Tx = {

RcePic::NonContiguous,

16, // Header

64*132, // Payload

128 // Number of buffers };

PgpTrans::RCDIslave *rcdi=new PgpTrans::RCDIslave; // RCDI interface

RcePic::Pool *pool = new RcePic::Pool::Pool(Tx);

rcdi->SetPool(pool); // tell the handler so it can put back the buffers

RcePgp::DriverList *driverList = RcePgp::DriverList::instance();

RcePgp::Driver *pgpd = driverList->handler(RcePgp::RTM 0, rcdi);

RCE FEE Simulator 10



HSIO

SLAC Particle Physics &

Astrophysics

• In hardware the HSIO is a board with a Xilinx FPGA.

• Function:

– Receive data from RCE.

– Buffer it in a FIFO.

– Serialize it for the FE.

– Receive serial data from the FE.

– Send data to the RCE.

• Create an HSIO class with this functionality.

RCE FEE Simulator 11



HSIO Class

SLAC Particle Physics &

Astrophysics

• Implement setRegister(...) function of RCDIslave to insert data into the

buffer.

• Implement executeCommand(...) function of RCDIslave to send buffer to FE

class.

• HSIO class calls RCDIslave’s sendData(...) as handshaking like in the

hardware implementation.

• To send data FE class calls a function in HSIO which then uses RCDIslave’s

sendData(...) to send data back to the master RCE.

RCE FEE Simulator 12



FE Classes

SLAC Particle Physics &

Astrophysics

• The implementation of the frontend classes depends on the ASIC to be

simulated.

• Create classes that correspond to FE elements.

• In the pixel module there is 1 controller and 16 chips.

• Create configuration registers and emulate their functionality as needed.

• For the digital test presented in the previous session one would for example

have to implement the pixel mask registers with their functionality.

• Return data on L1A. The data could come from file or be simulated in the FE

classes.

• For the digital test the relevant data is basically just a “1” if the pixel fired.

RCE FEE Simulator 13



FE Parser

SLAC Particle Physics &

Astrophysics

• RCDI and HSIO do not know what the configuration and event data means.

• It is the FE controller and the 16 FE chips on the pixel module that parse the

incoming bitstream and translate it into register settings.

• Write a parser class to decode the incoming configuration data and set the

registers in the frontend classes accordingly.

RCE FEE Simulator 14



Data Encoder

SLAC Particle Physics &

Astrophysics

• Collect data from the frontend classes.

• Encode the data into a bitstream.

• Transfer the bitstream buffer to the HSIO class.

• The data can be read into the slave RCE through ethernet or from nfs.

RCE FEE Simulator 15



A Real Example

SLAC Particle Physics &

Astrophysics

• At SLAC we want to do a realistic test of the data transmission for the

insertable B layer.

• We are building an electrical prototype for one halfstave.

• 16 chips.

• Data readout at 160 Mbits/s.

• Configuration and clock at 40 Mbits/s.

• In order to measure transmission quality and cross-talk we have to run 16

readout chains in parallel.

RCE FEE Simulator 16



IBL Transmission Test

SLAC Particle Physics &

Astrophysics

R
T

M

RCE

Drawing: Dave Nelson

• Data transmission test for the insertable B layer.

RCE FEE Simulator 17



Design

SLAC Particle Physics &

Astrophysics

• 16 serializers and deserializers on the HSIO.

• HSIO connects to the stave through a custom interface board.

• Upload data from RCE to HSIO via PGP.

• Control serializers via PGP.

• Download transmission results to the RCE through PGP.

RCE FEE Simulator 18



Summary

SLAC Particle Physics &

Astrophysics

• The RCE can be used as a frontend simulator.

• Data can be sent to the DAQ at Gbit/s rates.

• C++ classes emulate hardware components.

• Data can be uploaded via ethernet.

• SLAC will use the RCE for frontend simulation for the IBL.

RCE FEE Simulator 19


