
SLAC Particle Physics &

Astrophysics

Demonstration of the RCE

Interfaced to the Pixel FE

RCE Training Workshop

Martin Kocian, kocian@slac.stanford.edu

June 15, 2009

Introduction

SLAC Particle Physics &

Astrophysics

• The goal was to implement a pixel calibration on RCE system to explore the

calibration aspect of an RCE based DAQ system for ATLAS.

• The calibration chosen is the “digital test”.

– Injects a “digital charge“ into the digital circuitry of each pixel.

– The test is done in 32 mask stages.

– The output is an occupancy histogram with one bin per pixel.

• The following slides contain a detailed discussion of:

– RCE system setup compared to present ROD calibration setup.

– PGP protocol for FE communication.

– FPGA side of FE communication.

– RCE side of FE communication.

– DSP code conversion.

– Linux control executable.

RCE Pixel FE Calibration 2

ROD Based Calibration

SLAC Particle Physics &

Astrophysics

Linux

Single board com
puter

VME crate

R
O

D

B
O

C

Fibers

Pixel Frontends

R
eadout M

odule (R
O

D
)

Ethernet

• The pixel system has a number of electronics calibrations that run on the RODs.

• Infrastructure (Databases etc.) run on Linux.

• Communication is done over an SBC that talks to the DSPs inside the ROD over

VME using “primitives,” data blocks that can easily be transferred over VME.

• DSPs run central part of calibration (e.g. mask stage loop) and do histogramming.

• The master DSP talks to the FEs through a back-of-crate card which is connected to

the pixel frontends through optical fibers.

• Histograms are shipped out through the SBC to Linux.

RCE Pixel FE Calibration 3

RCE Based Calibration

SLAC Particle Physics &

Astrophysics

FE interfaces

Linux

ATCA crate

R
C

E

R
T

M

FibersEthernet

Pixel ModulesC
IM

 (Sw
itch)

R
C

E

• The SBC is gone.

• The VME crate is replaced by an ATCA crate.

• The RCEs replace the RODs and connect to Linux via Ethernet through 1 of 2 CIM

switches inside the crate.

• A CIM is connected to Linux through a 10 Gbit/s fiber.

• Each RCE contains a powerpc processor that runs the calibration.

• The RCE connects to the frontends through optical fibers at multi Gbit/s rates.

RCE Pixel FE Calibration 4

Frontend Chain

SLAC Particle Physics &

Astrophysics

RCE R
T

M

I/O
 boardFiber

cable

Pixel FE
MAC

cable

• The RCE is connected to the fiber module on the RTM through the zone 3 ATCA

connector.

• The RTM connects to a custom high-speed I/O fpga board (HSIO) through a pair of

optical fibers at 3 Gbits/s.

• The I/O board communicates with one frontend module through a Module Adapter

Card which contains LVDS drivers.

RCE Pixel FE Calibration 5

Frontend Interface Design

SLAC Particle Physics &

Astrophysics

• The protocol that was used for communication between the RCE and the

HSIO is PGP (pretty good protocol) which was developed at SLAC by Mike

Huffer et al.

• Data rate of 3 Gbits/s.

• 4 virtual channels per lane (i.e. per pair of optical fibers).

• Multiple lanes available per RCE depending on configuration.

• RCDI (Register Command Data interface).

– Convenient user interface.

– Vhdl design available for frontend fpga implementation.

– Software support in RCE.

• The PGP is one example of a protocol that can be used. Other protocols (e.g.

GBT) can be used as well.

RCE Pixel FE Calibration 6

RCDI

SLAC Particle Physics &

Astrophysics

• Through the RCDI interface PGP can be used to:

– Read and write registers remotely.

– Send opcodes.

– Receive (and send) data blocks.

RCE Pixel FE Calibration 7

Register Block

SLAC Particle Physics &

Astrophysics

• Write and read a 32-bit wide register to 24 bit wide address space.

• Returns a reply message to RCE.

• User can set fail bit for reply message.

• Timeout error is returned of the user logic does not acknowledge the request.

• Vhdl I/O port:

RCE Pixel FE Calibration 8

Command Block

SLAC Particle Physics &

Astrophysics

• Sends an 8-bit opcode to the user logic.

• Sends a 24 bit context word.

• No reply to RCE.

• Can be used for fast commands and for triggering.

• Highest priority. Data block transmissions are paused to allow for instant

command transmission.

• VHDL I/O port:

RCE Pixel FE Calibration 9

Data Block

SLAC Particle Physics &

Astrophysics

• User logic can send a stream of 16-bit words to the RCE.

• First and last word have to be flagged as start and end of frame.

• User can set error flag.

• In the current design the maximum data length is 2 MB (but this can be

configured to be a different size).

• VHDL I/O port:

RCE Pixel FE Calibration 10

RCDI with Pixel FE

SLAC Particle Physics &

Astrophysics

• HSIO board contains a Xilinx FX60 FPGA.

• One MGT (Gbit/s transceiver) on HSIO is connected to a fiber optics module.

• The RCDI vhdl design is implemented on the FX60.

• Custom logic on FX60 interfaces with pixel module.

• The following slides discuss how the RCDI is used for communication with the

pixel frontend.

RCE Pixel FE Calibration 11

Pixel Frontend Configuration

SLAC Particle Physics &

Astrophysics

• Pixel FE is configured through serial bitstreams at 40 Mbits/s.

• The register block is used to write configuration data to a FIFO inside the

HSIO board.

• The command block is used to trigger a serializer in the HSIO that will then

serialize the data inside the FIFO and send it to the frontend at 40 Mbits/s.

• The HSIO sends a short data stream back to the RCE as a handshake to signal

that the FIFO contents have been sent.

RCE Pixel FE Calibration 12

Calibration Pulse and Trigger

SLAC Particle Physics &

Astrophysics

• The calibration command and the trigger command for the pixel frontend are

bitstreams in the same way as the configuration.

• The same mechanism to send and serialize the CAL/Trigger command as for

configuration is therefore used.

• Instead of the serialization command at the end a “serialize and wait for data”

command is sent through the command block.

RCE Pixel FE Calibration 13

Data

SLAC Particle Physics &

Astrophysics

• The event data consists of one or two serial bitstreams at 40 or 80 Mbits/s

(depending on how the module is configured).

• This example calibration uses 1 bitstream at 40 Mbits/s.

• A deserializer in the HSIO creates 16-bit words from the bitstream without any

formatting.

• The deserializer is activated by the “serialize and wait” command.

• It starts running as soon as the first “1” appears at the input.

• It stops running when it receives 32 “0”s in a row.

• The output of the deserializer is the input to the data block of the RCDI.

• When the deserializer is done it asserts “End-Of-Frame” for the RCDI.

RCE Pixel FE Calibration 14

PGP On the RCE Side

SLAC Particle Physics &

Astrophysics

• The RCE firmware supports the PGP protocol.

• A C++ driver that interacts with the hardware is the software interface for

raw PGP.

• Handler classes can be written as high level interfaces.

• The RCDImaster class is such a handler class that implements the RCDI

interface in software.

• The following slides show how to use the PGP software on the RCE.

RCE Pixel FE Calibration 15

PGP Initialization

SLAC Particle Physics &

Astrophysics

• To use PGP:

– Define transmit buffer parameters.

– Create a pool of transmit buffers.

– Get the pgp driver for the desired lane from the system.

– Register your handler with the driver.

const RcePic::Params Tx = {

RcePic::NonContiguous,

16, // Header

64*132, // Payload

128 // Number of buffers };

PgpTrans::RCDImaster *rcdi=new PgpTrans::RCDImaster; // RCDI interface

RcePic::Pool *pool = new RcePic::Pool::Pool(Tx);

rcdi->SetPool(pool); // tell the handler so it can put back the buffers

RcePgp::DriverList *driverList = RcePgp::DriverList::instance();

RcePgp::Driver *pgpd = driverList->handler(RcePgp::RTM 0, rcdi);

RCE Pixel FE Calibration 16

RCDImaster Class I

SLAC Particle Physics &

Astrophysics

• RCDImaster class has the following accessor functions:

• Register read and write:

unsigned RCDImaster::writeRegister(unsigned address, unsigned value);

unsigned RCDImaster::readRegister(unsigned address, unsigned& value);

• The return value is the PGP status (0 if no error).

• Send command:

void RCDImaster::sendCommand(unsigned char opcode, unsigned

context=0);

RCE Pixel FE Calibration 17

RCDImaster Class II

SLAC Particle Physics &

Astrophysics

• For the data block the user has 2 choices:

1. Callback function:

• User provides a class that inherits from PgpTrans::Receiver

• User class implements void receive(RcePic::Tds* tds);

• User registers class with interface: rcdi->setReceiver(&myReceiver);

• Receive function is called every time data arrives.

2. RCDImaster class stores data if no callback function is registered:

• As data blocks are received they are stored in buffers.

• Number of currently stored data buffers: unsigned nBuffers();

• Retrieve current buffer (in the order received):

unsigned int currentBuffer(unsigned char*& header, unsigned&

headerSize, unsigned char*& payload, unsigned& payloadSize);

• Return value is 0 if OK 1 if no data buffer available.

• User has to invalidate buffer when it is no longer needed:

int discardCurrentBuffer();

• After that the next buffer (if there is one) becomes the current buffer.

• If the buffers are not discarded RCDI will run out of buffers.

RCE Pixel FE Calibration 18

Ethernet

SLAC Particle Physics &

Astrophysics

• Initialization:

RceInit::configure network from dhcp();

• Set up a UDP server:

enum {MY PORT = 1201};

clientaddr=RceNet::IpAddress(0,MY PORT);

servaddr=RceNet::IpAddress(INADDR ANY,MY PORT);

socket=new RceNet::SocketUdp;

socket->bind(servaddr);

• Send and receive messages:

sendMsg(&buffer,bufferLength);

ret= socket->recvfrom(&buffer,bufferLength, clientaddr);

RCE Pixel FE Calibration 19

Porting DSP Code to RCE

SLAC Particle Physics &

Astrophysics

• DSP code:

– 1 master DSP and 4 slave DSPs per ROD.

– Master code is a single endless loop.

– Controlled from SBC by writing to memory in VME.

– Hardware access (e.g. serial interface or FPGA logic configuration) throughout

the code.

– Written in C.

• Ported to RCE as:

– 1 powerpc processor runs master and slave code.

– Several tasks in parallel one of which is the main loop.

– Controlled via ethernet from Linux. On the RCE side there is a separate task

that converts the ethernet packets into memory blocks.

– Serial interface uses pgp through RCDImaster class.

– Formatting of the data is done in software in this example (instead of FPGA).

– Code is C with a few C++ classes (ethernet and pgp).

RCE Pixel FE Calibration 20

Linux Code

SLAC Particle Physics &

Astrophysics

• Control executable runs on Linux host.

– Reads configuration and sends it to RCE.

– Starts calibration.

– Reads histograms from the RCE and displays them in root.

• Uses PixLib library in a standalone version without databases.

• VME access functions replaced by functions that use ethernet.

• Configuration read from TurboDAQ file.

RCE Pixel FE Calibration 21

Experience

SLAC Particle Physics &

Astrophysics

• It is straightforward to compile C/C++ code on RTEMS.

• The usual c/c++ libraries including STL are available.

• The system is very stable.

• Debugging is convenient through gdb.

• The only complication was endianness: Powerpc is big-endian, the DSPs are

little-endian.

RCE Pixel FE Calibration 22

Summary

SLAC Particle Physics &

Astrophysics

• Pixel digital test was ported successfully to run on RCE.

• Communication with the Pixel FE is done through PGP protocol.

• On the FE side there is a PGP interface to the user logic consisting of a

serializer/deserializer.

• On the RCE side a C++ user interface for PGP exists.

• DSP code was ported without any major changes.

• Demonstration to follow...

RCE Pixel FE Calibration 23

