# Improved Electron Transport in G4CMP-276

Iman Ataee Langroudy, <u>Michael Kelsey</u>, Dave Toback Texas A&M University

G4CMP Developers Meeting, 15 Aug 2024

### SuperCDMS Experiment



- Direct detection search for dark matter (WIMP or axion-like)
- Underground at Sudbury (Vale) mine, host of SNOLAB facility
- Assembling now, commissioning early 2025, first science late 2025

2km Overburden Creighton #9 shaft

Underground Lab: 37,000 m<sup>3</sup> volume 5000 m<sup>2</sup> Class 2000 0.27µ/m<sup>2</sup>/day



# **SuperCDMS**

50 mK base temperature, 6-stage fridge 4 towers, 6 detectors each, 60° rotations Ge(100), Si(100) detectors 100×33 mm High (100V) and low (4V) voltage Charge and phonon sensors





### **SuperCDMS Experiment – Detector Response**

We use G4CMP to model e/h propagation and NTL phonon production

G4CMPKaplanQP models phonon collection and TES sensor response

A useful "truth" metric to evaluate detector performance compares total phonon energy collected (reported by KaplanQP) to expected phonon energy for a given energy deposit and voltage bias

$$E_{\text{expected}} = E_{\text{deposit}} \times (1 + \text{Voltage}/\epsilon_{\text{pair}})$$
  
Efficiency = E\_phonon / E\_expected

Next slide shows what we've been seeing (for three years) when we generate events in the full SuperCDMS geometry

### **Multiple SuperCDMS Detectors (V08-10-00)**

Single hits show excess NTL energy at lower voltage, rotated detectors

Multiple hits exacerbate NTL emission problems



# **Proper Electron Transport Kinematics**

Wavevector momentum  $p = \hbar k$  different from transport momentum p = "mv", since "m" is tensor mass

|                    |                                         |                                                                                                             |                                   | XY plane  |
|--------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------|
|                    | Free Electron                           | In Crystal                                                                                                  |                                   | F 🖊       |
| Lorentz Boost      | $\gamma^{-1} = \sqrt{(1 - v^2/c^2)}$    | $\gamma'^{-1} = \sqrt{(1 - \mathbf{M}v^2/m_0^2 c^2)}$                                                       |                                   | Valley 11 |
| Transport Momentum | $P = \gamma m_0 v = \hbar k$            | $P = \gamma'  \boldsymbol{m}_0 \boldsymbol{v} = \boldsymbol{m}_0 \boldsymbol{M}^{-1}  \hbar \boldsymbol{k}$ |                                   |           |
| Kinetic Energy     | $E_{kin} = (\gamma - 1) m_0 c^2$        | $E_{kin} = (\gamma' - 1) m_0 c^2$                                                                           |                                   |           |
| Effective Mass     | $\mathbf{m}(\mathbf{k}) = \mathbf{m}_0$ | $m(\vec{k}) = \frac{P^2 c^2 - E_{kin}}{2 E_{kin} c^2}$                                                      | Valley 111                        | XZ plane  |
| Acceleration       | a = F/m0                                | $a = \mathbf{M}^{-1} F$                                                                                     | . 1 .                             |           |
|                    | ·                                       |                                                                                                             | $a^{-1} = \mathbf{M}^{-1} F^{-1}$ | , not     |

#### Iman Ataee Langroudy, TAMU

111 last points

Ge(100)

111 last

points

Other octants

lianed!

### Transport and Efficiency, May 2024 (Without IV)

Ge(100) shows expected four spots

Efficiency precision better than **10**<sup>-6</sup>



### Transport and Efficiency, July 2024 (With IV)

#### Expected mix of 0,1,2 IV scatters



Efficiency precision on order of **10**<sup>-7</sup>

Plots courtesy of Iman Ataee

### **Multiple Detectors in SNOLAB Towers**

Efficiency for single 10 keV deposit



Stragglers are events outside of well-measured volume; see  $\underline{p. 23}$ 

Efficiency unaffected by orientation



## **Multiple Detectors in SuperCDMS (Ge-71)**

SNOLAB detectors, Ge-71 contaminant events iZIP7 iZIP7Si 50 HV100mm HV100mmSi 40 30 20 10 0 0.75 0.80 0.85 0.90 0.95 0.70 1.00 Phonon Efficiency

Multiple hits per event, including non-zero nuclear recoil

Compute Eexpected per hit individually, then sum for each event/detector

Narrow peak at 100% for events within fiducial region, straggler events (partially) outside fiducial

## **Deployment to G4CMP (will be V09-00-00)**

Results here presented to SuperCDMS Simulations WG (DMC sub-WG)

Shown to small group of G4CMP users "known to be" using e/h transport

Rapid consensus that improvements significant and correct enough to warrant immediate release

Merged onto G4CMP **develop** branch and included in new major release **V09-00-00**, 6 Aug 2024

Want a substantial validation campaign to catch any problems early

### **Systematic Performance Validation**

Energy deposits spread through detector: charge and phonon efficiency

- Phonon efficiency for hits as detectors are rotated around Z and X axes
- Use phonon efficiency to (re)identify SimFiducial boundaries
- Charge and phonon efficiency using new 3D EPot files?

Individual e/h pairs produced at center of each detector, suppress phonon tracks

- Record individual electron and hole hits
- Plot hit positions on each face to show "valley spots" and intervalley scatters
- Measure Vdrift = (Z3-Z1)/(Time3-Time1) for range of voltages

Other systematic performance measurements

## **Summary and Conclusions**

Iman Ataee has completely revised electron transport in G4CMP

Compiles, links and runs with SuperCDMS Simulation Framework

Excellent performance for all SuperCDMS detectors

- High and low voltage, rotated detectors
- Results taken with uniform field

Code merged onto G4CMP develop branch and released 6 Aug 2024

Broader validation campaign should be started soon

# **Backup Slides**

### **Updated Feature Branch to Latest Develop**

Software work on branch **G4CMP-276** started in 2021

No updates from main development or production had been ported to G4CMP-276

May 2024: Back-merged **develop** branch onto **G4CMP-276**, incorporating production development with G4CMP-276 kinematics changes

Consistent with before-merge results, performance with intervalley scattering included matches expectations

Some additional minor issues were found and addressed during validation

### Final Software Improvements since May 2024

G4CMP-408 G4CMP-417

- Ensure Luke scattering (phonon-electron) done properly in Herring-Vogt frame, and transformed back to position space
- <u>G4CMP-409</u> Ensure that new momentum/energy initialization is done at start of Scattering process
- <u>G4CMP-412</u> IVScattering should preserve wavevector angle, not transport momentum; don't transform E-field for rate calculation
- <u>G4CMP-413</u> Compute minimum step in TimeStepper to handle low-energy states, with protection against divide by zero in zero-field case
- <u>G4CMP-414</u> Address compilation warnings in debugging, function name change

#### With these changes, G4CMP-276 appears ready for deployment

### After G4CMP-417/418: 1V bias on Ge(100)



### After G4CMP-417/418: 10V bias on Ge(100)



### After G4CMP-417/418: 100V bias on Ge(100)



### Example Ge-71 event (#3) in Ge(100) Detector

| PName | Position [mm]                   | Edep [eV] | dE/dx [eV] | NIEL [eV] | N(e/h) | NTL [eV] |
|-------|---------------------------------|-----------|------------|-----------|--------|----------|
| Ga71  | -16.19404, -3.712992, -7.954497 | 0.3741150 | 0.0218406  | 0.3522745 | 0      | 0.0      |
| gamma | -16.19586, -3.716519, -7.957554 | 9209.0218 | 9209.0218  | 0         | 3096   | 12384.0  |
| e-    | -16.19404, -3.712994, -7.954495 | 984.19523 | 984.19523  | 0         | 343    | 1372.0   |
| e-    | -16.19404, -3.712992, -7.954497 | 56.786866 | 56.786866  | 0         | 21     | 84.0     |
| e-    | -16.19404, -3.712992, -7.954497 | 10.794077 | 10.794077  | 0         | 4      | 16.0     |
| e-    | -16.19404, -3.712992, -7.954497 | 70.311582 | 70.311582  | 0         | 26     | 104.0    |

Hits at R = 16.614 or 16.617 mm, within fiducial volume

| Σ [Edep+NTL] | 24291.483 eV | (expected PhononE) |
|--------------|--------------|--------------------|
| Σ PhononE    | 24304.267 eV | 99.95% efficiency  |

<u>G4CMP-416</u> – dE/dx < bandgap added to NIEL

### Ge(100) Detector Efficiency (Ge-71 decays)



This looks sensible

Peak at 100% where all hits within fiducial region

Tail and "subpeak" below 100% where some hits went outside fiducial region

Dribble of events where whole decay was outside fiducial region

### Multihit Events in Ge(100) look reasonable



### Multihit Events in Ge(100) do not have problems



Five model hits per event, all at center of detector (like Ge-71)

/CDMS/Source point /CDMS/Point/Position 0 0 0 mm /CDMS/Point/Generator dmcgun /CDMS/Point/energyRange 0.1 10 keV /CDMS/Point/partition /CDMS/Point/Particles 5

Efficiency 100% within 1e-5

### **Fiducial Regions in SuperCDMS Detectors**

Single hit (10 keV) sample of 100 events point are for **eff < 0.99** 

Fiducial regions consistent with past determinations (dotted lines), but statistics are very low



### Ge(100) and Si(100) Phonon Collection Efficiency



<sup>1</sup>eV Single Electron

<sup>3.9</sup>eV Deposition