

Transverse size analysis of electrons showers and longitudinal position measurement

- Summary of what I have shown at the the last beamtest meeting and the last C\&A meeting
- CalTransRms definition
- Transverse size estimation
- Transverse and longitudinal position measurement
- longitudinal position vs energy

CalTransRms discrepancy (reminder)

- 100 GeV on-axis
- CalTransRms is 15% larger than in MC
- X-axis :
- $0=$ center of x tal
- 1 = between $2 \times$ tals

Longitudinal position
February 26, 2008

CalTransRms definition

- Inertia tensor : when calculated in the referential defined by the principal axis, the inertia tensor is diagonal and the 3 moments of inertia are:
- Ixx $=\int\left(y^{2}+z^{2}\right) d m d x d y d z$
- Iyy $=\int\left(x^{2}+z^{2}\right) d m d x d y d z$
- Izz $=\int\left(x^{2}+y^{2}\right) d m d x d y d z$
- CalMomentsAnalysis determines, using $m=E$:
- the centroid
- the principal axis (z gives the shower axis, thus the particle direction)
- the 3 moments : CalTransRms = sqrt(Izz/E)
- It is an iterative procedure during which the more distant crystals are discarded : if distance to axis is greater than CalTransRms \times scalefactor ($=1.5$ in first iteration, $3,6,12 \ldots$)
- CalTransRms is then recalculated with final centroid and with all crystals

Transverse size estimation

- I wanted to see how sensitive we are to the edges of the shower
- I've used the Tkr1 direction instead of Cal direction
- Sort the crystals in increasing distance to the first track
- For crystal i, Efrac[i] = (E[0]+E[1]+...E[i])/CalEnergyRaw
- Estimate the transverse size at Efrac $=0.9$ or 0.95 or 0.99

One event from run 1981 (100 GeV , on-axis) :

February 26, 2008

cal meeting

4

100 GeV on-axis, using only transverse position

- X-axis : $0=$ center of crystal, $1=$ between two crystals

Mean dist at Efrac=0.9

Mean dist at Efrac=0.99

Transverse size estimation

- With the transverse size of the showers using only the transverse position measurement, we have a far better agreement between data and MC
- The agreement is better at Efrac=0.9 than at Efrac=0.99 : the remaining discrepancy comes from energy deposition discrepancy between data and MC at the edge of the shower

Offset corrections

- I've used all runs at 0 deg from 5 to 282 GeV
- For each crystal, I've determined the offset as function of log10(energy) :

February 26, 2008
cal meeting

100 GeV on-axis, use corrected longitudinal position

- X-axis : $0=$ center of crystal, 1 = between two crystals

Sqrt(mean dist*dist) at Efrac=0.9

Sqrt(mean dist*dist) at Efrac=0.99

February 26, 2008 cal meeting

Coming back to offset corrections

- I've determined 4 sets of offset corrections for all energies at $0,10,20$ and 30 deg
- For each crystal, I've determined the offset as function of log10(energy):

Offset determination at 0 deg

Offset determination at 0 deg

Offset determination at 10 deg

Offset determination at 10 deg

Offset determination at 20 deg

Offset determination at 20 deg

Crystal 5/6 (20 deg)

Offset determination at 30 deg

Offset determination at 30 deg

Crystals 5/5 and 5/6 (30 deg)

Offset summary

- Histograms of all offsets versus $\log 10$ (crystal energy) : each entry is the offset correction for one crystal for one energy bin (when offset precision is better than 2 mm)
- Offsets are not well within +-5 mm , even at low energy, and especially at high energy (the distribution is quite flast above 1 GeV between - 10 and 10 mm)

Offset correlation with energy data/MC

