High-Energy Pulsar Wind Nebula Studies

Jordan Eagle^{1 (NPP)}

¹NASA Goddard Space Flight Center (GSFC), Greenbelt, MD

High-Energy Pulsar Wind Nebula Studies

Mean pulse profiles for a sample of *periodic sources*

- Hewish et al., 1970)
 July 1967: constant periodic radio signal detected in sky
- Neutron stars immediately guessed to be a possible origin

"The most significant feature to be accounted for is the extreme regularity of the pulses. This suggests an origin of the pulsation of an entire star, rather than some localized disturbance in a stellar atmosphere" (Hewish et al., 1968).

By 1969, over 50 constant periodic signals were discovered.

The Crab Nebula in X-ray (blue), optical (red), and infrared (purple). From: https://chandra.Harvard.edu/photo/2009/crab/

Discovery of Pulsars

High-Energy Pulsar Wind Nebula Studies

NP 0532

- One such signal is discovered in the center of the Crab nebula (Staelin et al., 1969)
 - Lynds et al., 1969 confirmed the first ever pulsar in the Crab by matching optical to the radio pulse.

 The Crab is believed to be the supernova (SN) remains of a SN recorded by Chinese astronomers in 1054CE

The mean pulse profiles for the Crab pulsar (Hewish

et al., 1970).

196 MHz

Pulsars power highly magnetic, relativistic winds

Pulsar wind nebulae (PWNe)

X-ray: NASA/CXC/SA O; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Instagram versus reality

Gaensler and Slane, 2006, ARAA

Radio

NRAO/AUI and M. Bietenl

Review: Hester, J. J., 2008, ARA&A, 46, 127 When Instagram IS reality

SA/ASU/J.Hester & A.Loll)

Optical

From Liz's 2023 Crab Flare Lecture!

NASA/CXC/ASU/J.Hester et al.

PWN inside host SNR, Gaensler & Slane, 2006.

Pulsar Wind Nebulae (PWNe)

High-Energy Pulsar Wind Nebula Studies

cm⁻² s⁻¹]

[eV

ы

A highly relativistic, magnetic particle wind

- Descendants of core collapse supernovae (CC SNe)
- Powered by the central pulsar
- Mostly electrons and positrons radiating synchrotron and Inverse **Compton Scattering** (ICS) emission

Ex: The Crab Nebula

Broadband emission from PWNe

High-Energy Pulsar Wind Nebula Studies

8

The High-Energy Domain

Short answer:

High-Energy Pulsar Wind Nebula Studies

Long answer (still cosmic rays):

The CR flux as observed on Earth (Hillas, 2006). Energies and rates of the cosmic-ray particles

Efficient Particle Acceleration

CR particle spectrum follows a power law where p ≥ 2

 $\frac{dN}{dE} \propto E^{-p}$

High-energy observations of several PWNe imply p ~ 2 for the underlying particle spectra

High-Energy Pulsar Wind Nebula Studies

The observed CR spectrum from Earth

PWNe as efficient particle accelerators

Galactic Cosmic Ray Production

 Where there are shockwaves (PWNe, SNRs, AGN, etc.) there is possibly diffuse shock acceleration (DSA) that is efficiently accelerating particles to cosmic ray (CR) energies

WikiCommons

High-Energy Pulsar Wind Nebula Studies

Diffuse Shock Acceleration (DSA)

Inner ring = termination shock (TS) – is DSA occurring here?

High-energy observatories

Disclaimer: Not an exhaustive list!

X-ray

- Chandra (<10keV)
- XMM-Newton (<10keV)
- NuSTAR (<78keV)

Low-energy gamma-ray

- The least explored!
- COSI (2027 4, 200keV-1MeV)
- AMEGO-X (2028 🕹 , 100keV-1GeV)

High-energy Gamma-ray

- Fermi-LAT (50MeV to >300GeV)
- IACTs (+water Cherenkov, >1TeV) e.g., MAGIC, VERITAS, HAWC, HESS, LHAASO

The Fermi- Large Area Telescope (LAT)

Instrument Design:

 "Indirect" imaging via process called pair conversion

Pair conversion process animation Credit: NASA/Goddard Space Flight Center

Sensitivity:

 The most sensitive instrument operating between 50 MeV to > 300GeV gamma-ray energies

Resolution:

- Energy-dependent
- Optimal at ~ 10GeV

From: https://www.slac.stanford.edu/exp/glast/g roups/canda/lat_Performance.htm

High-Energy Pulsar Wind Nebula Studies

Fermi-LAT PWNe

- a) Majority (~38) of Galactic TeV sources are PWNe
- b) Spectra of many TeV PWNe indicate ICS peak occurs in lower-energy γ -rays (i.e., MeV GeV where Fermi is most sensitive)
- c) Only 11 PWNe are firmly identified by the Fermi-LAT in the MeV GeV band!

What I focus on: completing a systematic

search for the $\gamma\mbox{-}\mbox{ray}$ counterparts to known+candidate PWNe identified in radio, X-ray or TeV

To identify γ -ray PWNe, we rely on multiwavelength (MWL) studies

Current gamma-ray telescopes have limited angular resolution

We must also consider PSR or SNR contributions...

Shows the ~300 pulsars detected by Fermi to date!

Credit: NASA's Goddard Space Flight Center

- Pulsars are the **largest** Galactic source population detected by the Fermi-LAT
- Typically "soft" spectral nature i.e., Fermi emission becomes insignificant by a few GeV

Supernova Remnants (SNRs)

- SNRs can also emit γ -rays
- Outnumber PWNe in Fermi catalogs (by nearly double)

W41 in radio. Frail et al., 2013

Broadband emission

Identifying Fermi PWNe

MSH 15-56 in radio (left) and in X-ray (right) from Temim+2017.

MSH 15-56 SNR (left) and PWN (right) in 1-300GeV with Fermi from Devin+2018.

- Remove pulsed γ-ray signal → detect off-pulse signature not from pulsar (Crab, Vela-X, 3C 58)
- Flaring (Crab)
- Spatial and spectral studies in broadband (MSH 15-56)

B0453-685 Fermi-LAT detection

- Point-like γ-ray emission discovered coincident to B0453-685
 - B0453-685 has angular size < 0.05 °
 - << than the Fermi optimal PSF ~ 0.1°
 - Detected at ~4 σ (TS = 23 for 2 DOF)
 - Has soft spectral index $\Gamma_{\gamma} = 2.3 \pm 0.2$

1-10GeV *Fermi* γ-ray significance map

1 < E< 10GeV 5x5 ° TS map. Max TS at location of B0453-685 = 28.

Spatial and spectral studies in broadband X-RAY RADIO

E [MeV]

High-Energy Pulsar Wind Nebula Studies

-68.48

-68.50

٠

X-ray

73.45

High-Energy Pulsar Wind Nebula Studies

21

Another example... G327.1-1.1

Spatial and spectral modeling

Particle Properties	Eb (GeV)	Index1 (E < Eb)	Index2 (E > Eb)	Max E (PeV)
B0453-685	70	1.3	2.4	0.73
G327.1-1.1 (Temim+2015)	300	1.48	2.2	0.5
G327.1-1.1 (Eagle+2022)	1000- 41000	1.61	2.15	0.2

Similar to the Crab which also requires two electron populations:

Comp-I particle injection index **p = 2.2**

- Accelerated via diffusive shock acceleration (DSA)
- Dominate in MeV-GeV γ -ray band

- Comp-II particle injection index **p = 1.6**
- Not likely to be undergoing DSA, but instead turbulence-driven* particle acceleration
- Dominates majority of radio emission

We can learn about the acceleration mechanisms of the underlying particles

High-Energy Pulsar Wind Nebula Studies

* Such as magnetic reconnection and/or Weibel instability (Sironi & Spitzkovsky, 2011)

Lvutikov+, 2019²³

High-energy PWN population

Summary

- The Crab Nebula is the prototype of PWNe (for good reason!)
- Where there are gamma-rays there may be cosmic rays
- PWNe are candidates for Galactic CR acceleration
 - Most Galactic TeV sources = PWNe
 - High-energy PWN observations imply CR acceleration capabilities
 - Great laboratories for studying acceleration mechanisms, required conditions, and particle properties

Extras

W44 in X-ray (blue), IR (green and red). X-ray: NASA/CXC/Univ. of Georgia/R.Shelton & NASA/CXC/GSFC/R.P etre; Infrared: NASA/JPL-Caltech

IC 443 in X-ray (blue), radio (green), and optical (red). Credit: Chandra X-ray: NASA/CXC/B.Gaensler et al; ROSAT X-ray: NASA/ROSAT/Asaoka & Aschenbach; Radio Wide: NRC/DRAO/D.Leahy; Optical: DSS

Real Property in the second se

Fermi-LAT Supernova remnants W44 and IC443

Ackermann et al., 2013.

Signature pion-decay "bump"

Particle acceleration in SNRs

Credit: NASA's Goddard Space Flight Center

Both electrons and protons can be accelerated in the shockwaves of SNRs

γ -ray Emission in SNRs

Systematic Studies

Below: The Fermi-LAT 12-year sky E > 1 GeV. The 58 ROIs are indicated. Green = point-like detections, blue = extended detections, white = nondetections

Systematic error from choice of IEM

IEM: the interstellar emission model

Must consider uncertainties from diffuse gamma-ray Galactic background model

- aIEM prescription first outlined in the SNR catalog
- We adopt the same
 8 alternative IEMs
 (aIEMS) from FGES
 to measure
 systematics from
 choice of IEM

Systematic error from IRF

IRF: Instrument response function

Must consider uncertainties from instrument performance

- Analysis enables energy dispersion
- IRF systematics estimated as follows:
 - +/- 3% for E < 100 GeV
 - +/- 4.5% for E = 175 GeV
 - +/- 8% for E = 556 GeV

30

High-Energy Pulsar Wind Nebula Studies

γ-ray origin investigation through MWL modeling

High-Energy Pulsar Wind Nebula Studies

Model	We or Wp (erg)	Β (μG)	Nh (cm- 3)
SNR (hadronic)	4e51	4.8	1.6
SNR (leptonic)	3e50	1.5	0.05

Modeling results

 The age of the SNR inferred from X-rays, lack of non-thermal X-rays from SNR, and the MWL modeling results <u>do not support</u> an SNR origin

 γ -ray origin investigation through MWL modeling

PWN Evolution through Broadband Studies

G327.1—1.1 Simulation

G327.1—1.1 Observation

From Eagle et al., 2022