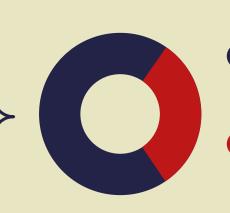
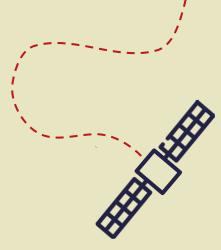
IN SEARCH OF EVIDENCE OF Flares in t tauri stars as y-ray emitters

Agostina Filócomo

Fermi Summer School Lewes, Delaware, May 28 – June 7, 2024





FERMI GAMMA-RAY SPACE TELESCOPE

LARGE AREA TELESCOPE (20 MeV - 300 GeV)

Image: Second second

<**73%** Identified sources

> 27% Unidentified sources

Y-RAY EMITTERS

STARBURSTS

AGNs

PULSARS

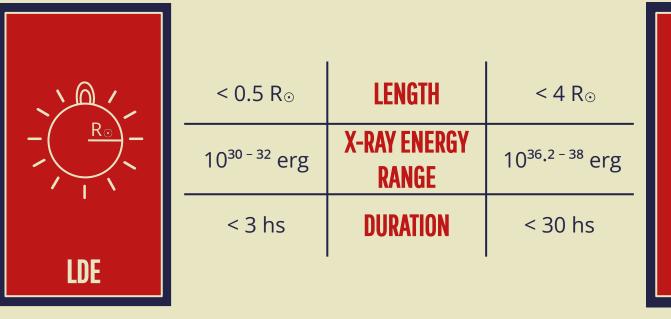
SUPERNOVA REMNANTS

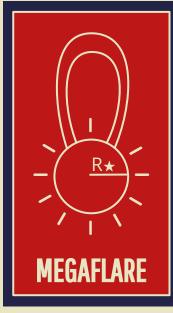
• GALAXY CLUSTERS

COLLIDING-WIND BINARY SYSTEMS

MICROQUASARS

T TAURI STARS?

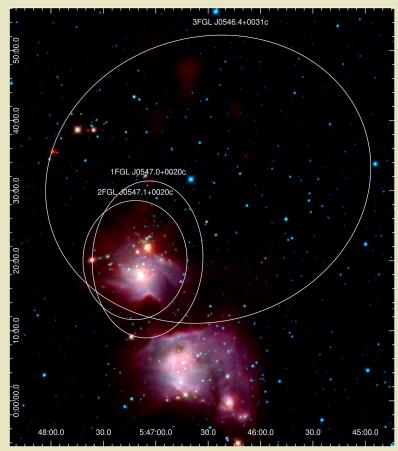

(del Valle M. V. et al., 2011, ApJ, 738, 115)


T TAURI STARS

- Low-mass young stellar objects
- Ages < 10 Myr
- Masses < 3 M $_{\odot}$
- Spectral type F M
- Located in star-forming regions

Artist's impression of a T Tauri star formed by a central star and a circumstellar disk. Credit: INAF-OAPa/S. Orlando

COMPARATIVE HIGHEST FLARING ACTIVITY

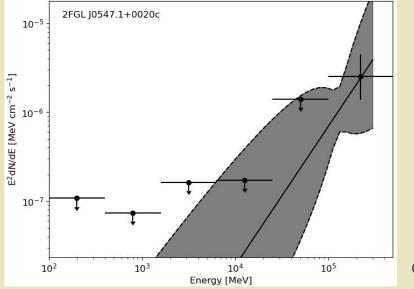

SUN

T TAURI

NGC 2071

- SFR located in the northern part of Orion B at a distance of 390 pc.
- Hα emission line stars, Herbig–Haro objects, T Tauri stars, high-mass young stellar objects.
- Positionally coincides with three unidentified
 y-ray sources observed at different time intervals.
- No source was detected in the 4FGL catalog and its data releases.

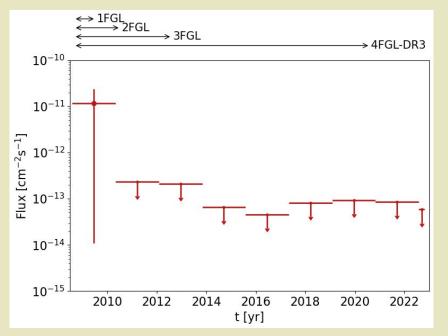
NGC 2071 obtained with the *WISE* using the 22 µm (red), 4.6 µm (green), and 3.4 µm (blue) bands. Ellipses in white are the 3 σ significance *Fermi* error ellipses that positionally coincide with NGC 2071.

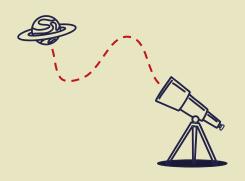


(Filócomo A. et al., 2023, MNRAS, 525, 1726)

Fermi data from Aug 2008 to Jul 2010

(observation time of the 2FGL catalog)

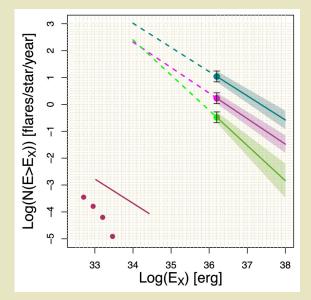

Significance = 3.2σ


Emission significant at E > 100 GeV

Computed SED in the energy range 100 MeV - 300 GeV.

TIME VARIABILITY ANALYSIS

Fermi data from Aug 2008 to Oct 2022



Detected only in the **first bin** with a significance of 3σ

Light curve with a 1.75-yr size bin for the source detected within 14.23 yr of *Fermi*-LAT observations.

Frequency of X-ray flares as a function of their X-ray energy and the mass of the star (Getman K. V., Feigelson E. D., 2021, ApJ, 916, 32)

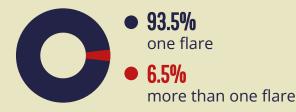
Stars with M < 1M_{\odot} (teal), M > 1 M_{\odot} (green), M = 0.1–150 M_{\odot} (magenta). The colored bands represent the observed power-law megaflare distribution, and the dashed lines extrapolate these relations to lower energies. Frequencies from older solar-type stars are in maroon.

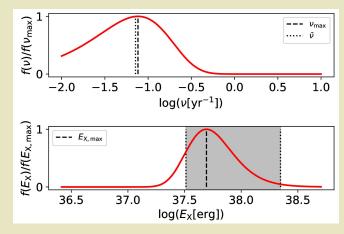
Frequency of flares with $E_{\chi} > 10^{36.2}$ erg (M < 1 M $_{\odot}$):

 $0.3^{+0.2}_{-0.1}$ flares/star/year

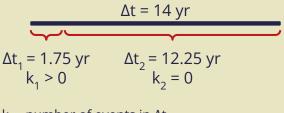
Frequency of megaflares in NGC 2071

f(v|D) is the PDF that represents the degree of belief in the proposition that the true value of the frequency lies in [v, v+dv] given the data D:


• Estimation of the true frequency (value that maximizes *f*) and estimation of the **minimum energy of the flares**:

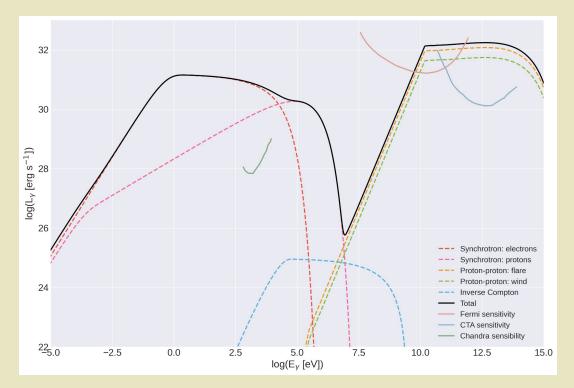

 $v_{\text{max}} = 0.076 \text{ yr}^{-1} \longrightarrow E_{\chi, \text{max}} = 5 \times 10^{37} \text{ erg}$

(Megaflare: $10^{36,2} < E_{\chi} < 10^{38}$ erg)


• 90% credible region for $E_{\chi} = [0.33, 2.22] \times 10^{38} \text{ erg}$

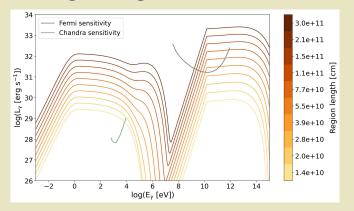
The betting odds of observing more than one flare in Δt_1 against observing exactly one flare are:

Behavior of f(v|D) and $f(E_{\chi}|D)$.

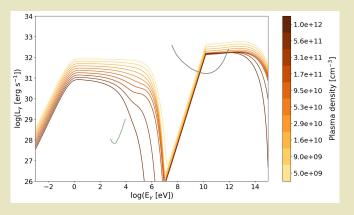

 k_i = number of events in Δt_i

THEORETICAL MODEL

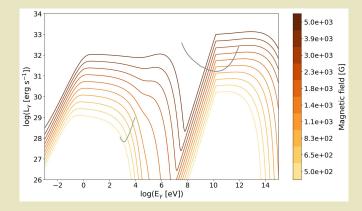
(Filócomo A. et al., in progress)

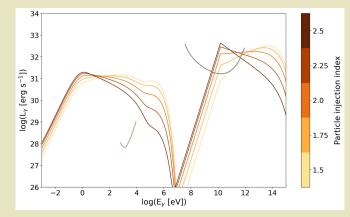

FIDUCIARY MODEL	
Region length	1.4 R∘
Magnetic field	2.5×10 ³ G
Plasma density	5×10 ¹¹ cm ⁻³
Injection index	2.0
Wind velocity	1.5×10 ⁷ cm s ^{−1}
Mass loss rate	10 ⁻⁸ M [°] yr ⁻¹

Lepto-hadronic non-thermal emission model of a megaflare in a T Tauri star.



Luminosity of the spectral energy distribution for the fiduciary model.


Region length ($0.2 \text{ R}_{\odot} < L < 4 \text{ R}_{\odot}$)


Plasma density $(5 \times 10^9 \text{ cm}^{-3} < n < 10^{12} \text{ cm}^{-3})$

Magnetic field ($5 \times 10^2 \text{ G} < B < 5 \times 10^3 \text{ G}$)

Particle injection index (1.5)

THANK YOU!

•

•

۲

0

۲

٠

۲

YUL

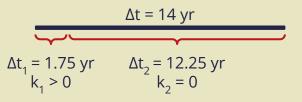
Frequency of megaflares in NGC 2071

Using the fact that at least N_{\star} = 58 stars were classified as T Tauri stars within the 2FGL error ellipse, the frequency of flares with energy > E_{χ} is

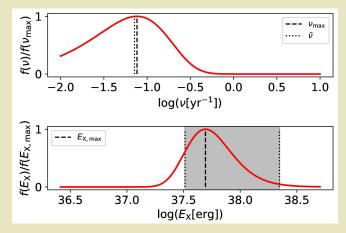
$$\log \Bigl[rac{
u(E_{
m X})}{{
m yr}^{-1}} \Bigr] = \log \Bigl[N_{\star} rac{N(E>E_{
m X})}{{
m yr}^{-1}} \Bigr] = \kappa' - eta \, \log \Bigl(rac{E_{
m X}}{{
m erg}} \Bigr), \; \kappa' = \kappa + \log N_{\star} = 48.70$$

PDF that represents the degree of belief in the proposition that the true value of the frequency lies in [v, v+dv] given the data D:

$$f(
u|D) = rac{\mathcal{L}(D|
u)g(
u)}{\int_0^\infty \mathcal{L}(D|
u)g(
u)d
u} riangle
u_{max}$$


Counting the number of flares k in a time interval Δt is a Poisson process.

 $\mathcal{L}(D|\nu)$ is the probability of measuring the data *D* given *v*:


 $\mathcal{L}(D|
u) = (1-\mathrm{e}^{u\Delta t_1})\mathrm{e}^{u\Delta t_2}$

 $g(\nu)$ represents the degree of belief in ν before taking the data D:

$$g(
u)=1/\Delta
u$$

Behavior of f(v | D) and $f(E_x | D)$

• Estimation of the true frequency (value that maximizes *f*) and estimation of the minimum energy of the flares:

$$v_{\text{max}} = 0.076 \text{ yr}^{-1} \longrightarrow E_{\chi, \text{max}} = 4.89 \times 10^{37} \text{ erg}$$

(one event every 13.2 yr)

The betting odds of observing more than one flare in Δt_1 against observing exactly one flare are:

$$q = \frac{P(k>1|k>0,\nu_{\max})}{P(k=1|k>0,\nu_{\max})} = \frac{1 - e^{-\nu_{\max}\Delta t_1}(1 + \nu_{\max}\Delta t_1)}{\nu_{\max}\Delta t_1 e^{-\nu_{\max}\Delta t_1}} = 0.069$$
• **93.5%** one flare
• **6.5%** more than one flare