

Study of Periodicity in Blazar Light Curves with a Machine Learning Approach

Paolo Cristarella Orestano^{1 2}

Prof. Gino Tosti¹², Dr. Sara Cutini², Dr. Stefano Germani¹²

¹ University of Perugia ² INFN Perugia

Outline

- Blazar Variability and Periodicity
- Sources
- Analysis
 - Weighted Wavelet Z-transform
 - Lomb Scargle Periodogram
 - Time Series and Noise Simulations
 - Emmanoulopoulos Simulations
- Machine Learning
- Outlook

Blazar Variability and Periodicity

Large variability at various wavelengths.

Pink or red noise type power spectrum $\propto f^{\delta}$.

The parameter δ goes from $\delta = -0.5$ to $\delta = -2$.

Long-term periodicities, or Quasi Periodic Oscillation, QPO, (founded in previous works [1][2]) could be related to **binary black holes** [3]:

- Intensity modulation.
- Precession, deflection or curvature of the jet changing the viewing angle.
- Not one but two jets.

Sources

From the Light Curve Repository¹ **1525** γ -ray sources analyzed: 571 FSRQ, 476 BLL, 371 unkown types of blazars, 107 other sources.

Six light curves **data types**: Energy flux (free index), Photon Flux (fixed index), 30d, 7d and 3d sampling.

Analysis Weighted Wavelet Z-transform (WWZ)

Time series projection onto a model function (**Morlet**) [5], to detects transient periodicities, studies temporal evolution of data and signal parameters.

Analysis Lomb-Scargle Periodogram (LSP)

Square module of the Discrete Fourier transform. In addition to the changes by Scargle [6] we take into account some consideration by Vanderplas [7].

The number of points n and the signal-to-noise ratio S/N do not affect the width of the peak but only its **height**.

Analysis Simulations

Preliminary significance estimation with **False Alarm Probability** (FAP)[7], comparing peak height with white noise background.

6

Analysis First Results from the Repository

Significant periodicities found in **23 blazars**. Many data types, $> 3\sigma$, and NRMSD¹ < 3%. Cutoff 40% UL.

Analysis Emmanoulopoulos Simulations

Simulations with the Emmanoulopoulos algorithm [8] to study light curves with similar characteristics (Probability Density Function and Power Spectral Density).

8

Analysis Best Results and Golden Sample

Selected a subsample, for each source (and each sampling and flux type) we perform **1 000 000 simulations**.

The *significance* is given by the number of times higher peak values are found in the LSP of the simulations.

Source Name	P(yr)	$N\sigma$
TXS 0059+581	4.2	3.4σ
MG1 J021114+1051	4.0	2.7σ
PKS 0215+015	3.4	2.1σ
PKS 0405-385	2.6	2.2σ
PKS 0426-380	3.7	2.9σ
PKS 0454-234	3.4	3.0σ
TXS 0518+211	3.0	4.3σ
$S5\ 0716+71$	2.4	1.4σ
OJ 014	4.1	$> 4.7\sigma$
S4 0814+42	2.2	4.1σ
$S5\ 1044{+}71$	3.1	$> 4.7\sigma$
S4 1144+40	3.3	$> 4.7\sigma$
B2 $1215 + 30$	2.8	3.0σ
4C + 21.35	3.7	1.8σ
PG 1553+113	2.1	$> 4.7\sigma$
PKS 2155-304	1.6	1.5σ

Analysis Best Results and Golden Sample

Machine Learning

t-Stochastic Neural Embedded neighbor algorithm unsupervised [9] (**t-SNE**):

Calculates the probability that each high vectors $\{x_j\}$ should be consider a neighbor of $\{x_i\}$ from the set of Euclidean distances $\{|\vec{x_j} - \vec{x_i}|\}$.

Since the vectors $\{x\}$ are compared point to point we opted for the normalized **Difference Cumulative** of the sorted periodogram **Power**.

LSP power \rightarrow sort \rightarrow cumulative \rightarrow \rightarrow difference $(a_{i+1} - a_i) \rightarrow$ normalize

Machine Learning

t-SNE produces a simplified map where the axes of this 2D space have no proper labels or meaning.

With this type of input the simulations can be distinguished.

Characteristics of the simulations:

SNR = 1, $-2.0 < \delta_{noise} < +0.5$

Machine Learning

With the sources around 60 of them are clustered near the golden sample.

Outlook

- Periodicities in 1% (*similar sources in a previous work of Peñil et al.* [2]) of variable sources with 16 years data from LCR, and a **golden sample of 6 sources**.
- **t-SNE** method seems to bring out a larger cluster, but not separated enough.
- Increase the complexity of noise and signal simulation to obtain similar morphology in the map and try adding different types of **input data** (also multiwavelength).
- We do not exclude other machine learning methods, that may be better suited to the data and the goal.

Outlook

- Periodicities in 1% (*similar sources in a previous work of Peñil et al.* [2]) of variable sources with 16 years data from LCR, and a **golden sample of 6 sources**.
- **t-SNE** method seems to bring out a larger cluster, but not separated enough.
- Increase the complexity of noise and signal simulation to obtain similar morphology in the map and try adding different types of **input data** (also multiwavelength).
- We do not exclude other machine learning methods, that may be better suited to the data and the goal.

Outlook

New outlook (more work)

- Periodicities in 1% (similar sources in a previous work of Peñil et al. [2]) of variable sources with 16 years data from LCR, and a golden sample of 6 sources.
- t-SNE method seems to bring out a larger cluster, but not separated enough.
- Increase the complexity of noise and signal simulation to obtain similar morphology in the map and try adding different types of **input data** (also multiwavelength).
- thanksto Fermi Summer School • We do not exclude other machine learning methods, that may be better suited to the data and the goal.
 - Comparing spectral models with a Bayesian approach for the golden sample for a more robust analysis.

Bibliography

[1] M. Ackermann, et al., "Multiwavelength evidence for quasi-periodic modulation in the gamma-ray blazar pg 1553+113", The Astrophysical Journal, vol. 813, p. L41,Nov 2015.

[2] P. Peñil, et al., "Systematic Search for γ-Ray Periodicity in Active Galactic Nuclei Detected by the Fermi Large Area Telescope", ApJ, vol. 896, p. 134, June 2020.

[3] S. Komossa, "Observational evidence for binary black holes and active double nuclei", Memorie della Società Astronomica Italiana, vol. 77, p. 733, 2006.

[4] M. Tavani, Marco, et al. "The blazar PG 1553+ 113 as a binary system of supermassive black holes" , ApJ 854.1 (2018): 11.

[5] G. Foster, "Wavelets for period analysis of unevenly sampled time series", AJ, vol. 112, pp. 1709-1729, Oct. 1996.

[6] J. D. Scargle, "Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data", ApJ, vol. 263, pp. 835-853, Dec. 1982.

[7] J. T. VanderPlas, "Understanding the Lomb-Scargle Periodogram", ApJS, vol. 236, p. 16, May 2018.

[8] D. Emmanoulopoulos, I. M. McHardy, and I. E. Papadakis. "*Generating artificial light curves: revisited and updated*." Monthly Notices of the Royal Astronomical Society 433.2 (2013): 907-927.

[9] L. van der Maaten and G. Hinton, *"Visualizing Data using t-SNE"*, Journal of Machine Learning Research 9 (86), 2579–2605, 2008.

Backup Slides

Weighted Wavelet Z-transform (WWZ)

Time series projection onto a model function (Morlet) [3].

 $W = \sum_{k}^{N} x(t_k) F^*(t_k)$

With the S-matrix $S_{ab} = \langle F_a | F_b \rangle$ as our metric tensor with statistical weights w in it, then the inner product of two function is:

$$\langle f|g\rangle = \sum_{a} \sum_{b} S_{ab} f_{a} g_{b}$$

Hence, using the variations $V_x = \langle x | x \rangle - \langle 1 | x \rangle^2$ and $V_R = \langle R | R \rangle - \langle 1 | R \rangle^2$ where the first is variations of the data and the second of the residual vector.

The WWZ is defined as:

$$Z = \frac{\left(N_{eff} - 3\right)V_R}{2\left(V_x - V_R\right)}$$

Where $N_{eff} = (\sum w_{\alpha})^2 / \sum w_{\alpha}^2$.

Lomb-Scargle Periodogram (LSP)

Square module of the Discrete Fourier transform. In addition to the changes by Scargle [4] we take into account some consideration by Vanderplas [5].

Signal and noise: $x_j = x(t_j) = x_{S j} + r_j$ Classic periodogram: $P_x(\omega) = \frac{1}{N} |DFT_x(\omega)|^2 = \frac{1}{N} |\sum_{j=1}^N x(t_j)e^{-i\omega t_j}|^2$ Not useful in case of noisy data. Spectral Leakage. Discrete Fourier Transform:

$$DFT_{x}(\omega) = \sqrt{N/2} \sum_{j=1}^{N} x(t_{j}) (A(\omega) \cos \omega t_{j} + iB(\omega) \sin \omega t_{j})$$

If $A(\omega) = B(\omega) = \sqrt{2/N}$ we obtain the classic periodogram. Lomb-Scargle changes: $A(\omega) = \left(\sum_{j} \cos^2 \omega t_j\right)^{-1/2} ; \quad B(\omega) = \left(\sum_{j} \sin^2 \omega t_j\right)^{-1/2}$

Modified periodogram:

$$P_{x}(\omega) = \frac{1}{2} \left(\frac{\left(\sum_{j} x_{j} \cos \omega(t_{j} - \tau)\right)^{2}}{\sum_{j} x_{j} \cos^{2} \omega(t_{j} - \tau)} + \frac{\left(\sum_{j} x_{j} \sin \omega(t_{j} - \tau)\right)^{2}}{\sum_{j} x_{j} \sin^{2} \omega(t_{j} - \tau)} \right) \quad \text{with} \quad \tan 2\omega\tau = \frac{\sum_{j} \sin 2\omega t_{j}}{\sum_{j} \cos 2\omega t_{j}}$$

False Alarm Probability (FAP)

To compare **peak height** with **background** and **spurious peaks**.

Probability that a peak of a certain height Z will be found from a data set consisting of white noise.

✤ Naive

The cumulative probability of observing a value less than Z with white noise is $P(Z) = 1 - e^{-Z}$. $FAP_{Naive}(Z) = 1 - (P(Z))^{N_{eff}}$

Bootstrap

Randomization of the time series, high computational cost. Simulations required: N=10/r, for a false positive rate r.

✤ Baluev

Extreme value theory for random processes. Upperbound for the FAP.

False Alarm Probability (FAP)

Bootstrap is a the most reliable method, **Naive** overestimates the significance, while **Baluev** underestimates it.

From the FAP we extrapolate a fictitious number of σ .

Two hypothesis: noise H and periodic signal K. FAP comes from the probability distribution of maxima in periodograms under H hypothesis.

Least-squares periodogram:

$$z(f) = \frac{\chi_H^2 - \chi_K^2(f)}{2}$$

With the theory of random processes we estimate the FAP:

$$FAP_{Baluev}(z, f_{max}) = 1 - \exp(-We^{-z}\sqrt{z})$$
$$W = f_{max}T_{eff} \quad ; \quad T_{eff} = \sqrt{4\pi Dt} \quad ; \quad Dt = \overline{t^2} - \overline{t}^2$$

False Alarm Probability (FAP)

Time Series and Noise Simulations

White Noise simulations as uniform randomization of Blazar light curves.

A period with significance > 2.5σ is found in less then 1% simulations.

Emmanoulopoulos Simulations

Simulations with the Emmanoulopoulos algorithm [6] to study light curves with similar characteristics (Probability Density Function and Power Spectral Density).

First step:

From the PSD make Timmer-König simulation: $x_{TK}(t)$, perform the DFT (Discrete Fourier Function) on it and take the amplitude A_{TK} .

Second step:

Take $x_0(t)$, White Noise simulation obtained from the PDF, perform the DFT and take phase ϕ_0 .

Third step:

Combine A_{TK} and ϕ_0 to have a X(j) in the frequency domain, perform the IDFT (Inverse) obtaining $x_C(t)$.

Fourth step:

Sort $x_c(t)$ in descending order and replace the values x_c with x_0 , also sorted in descending order, obtaining $x_i(t)$, where *i* is the number of iterations.

Fifth step:

Replacing $x_0(t)$ with the new $x_i(t)$, repeat the process from the second step until it converges i.e. when $x_i(t)$ and $x_{i-1}(t)$ have the same PSD.

Emmanoulopoulos Simulations

Golden Sample

Golden Sample

Pulsar

Apparent statistically significant observation, which has arisen from searching a large parameter space.

The **Trial Factor** (**N**) is used to account this effect. It is the ratio between the probability of observing a possible excess at some fixed point, to the probability of observing it anywhere in the range.

The local significance is reduced to the global significance (local>global).

$$p_{GLOBAL} = 1 - (1 - p_{LOCAL})^N$$

In this case someone considers $N = P \cdot B$, where P is the number of independent periods and B is the number of blazars.

In a previous work on the catalog: $N = 35 \cdot 351 = 12,285$, so a local 5.5 σ become 2.8 σ global significance). While in a paper about PG 1553+113, is $N = P \cdot 1 = 43$.

t-SNE, theory

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

```
Data: data set X = \{x_1, x_2, ..., x_n\},\
cost function parameters: perplexity Perp,
optimization parameters: number of iterations T, learning rate \eta, momentum \alpha(t).
Result: low-dimensional data representation \mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}.
begin
     compute pairwise affinities p_{i|i} with perplexity Perp (using Equation 1)
     set p_{ij} = \frac{p_{j|i} + p_{i|j}}{2n}
     sample initial solution \mathcal{Y}^{(0)} = \{y_1, y_2, \dots, y_n\} from \mathcal{N}(0, 10^{-4}I)
     for t=1 to T do
          compute low-dimensional affinities q_{ij} (using Equation 4)
          compute gradient \frac{\delta C}{\delta Y} (using Equation 5)
         set \mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) \left( \mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)} \right)
     end
end
```

 $\epsilon(P_i) = 2^{H(P_i)},$

where P_i represents the conditional probability distribution over all other $\{x_j\}$ given $\{x_i\}$, and $H(P_i)$ is the Shannon entropy of P_i in bits [202].

t-SNE, Simulations

Slightly different input type

t-SNE, Sources

