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Large variability at various wavelengths.

Pink or red noise type power spectrum ∝ 𝒇𝜹.

The parameter 𝛿 goes from 𝛿 = −0.5 to 𝛿 = −2.

Blazar Variability and Periodicity
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Long-term periodicities, or Quasi Periodic 
Oscillation, QPO, (founded in previous works 
[1][2]) could be related to binary black holes [3]:

• Intensity modulation.

• Precession, deflection or curvature of the jet 
changing the viewing angle.

• Not one but two jets.

Tavani et al., 2018 [4]



From the Light Curve Repository¹ 1525 𝛾-ray sources analyzed: 571 FSRQ, 476 BLL, 371 unkown 
types of blazars, 107 other sources.

Six light curves data types: Energy flux (free index), Photon Flux (fixed index), 30d, 7d and 3d 
sampling.

¹ https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/

Sources
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Time series projection onto a model function (Morlet) [5], to detects transient periodicities, studies
temporal evolution of data and signal parameters.

Analysis Weighted Wavelet Z-transform (WWZ)
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Square module of the Discrete Fourier transform. In addition to the changes by Scargle [6] we take 
into account some consideration by Vanderplas [7].

The number of points 𝑛 and the signal-to-noise ratio 𝑆/𝑁 do not affect the width of the peak but
only its height.

Analysis Lomb-Scargle Periodogram (LSP)
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𝑇/T0 ≈ 1
HWHM¹ ≈ 20%

¹ Half Width at Half Maximum

Preliminary significance estimation with False Alarm Probability (FAP) [7], 
comparing peak height with white noise background.
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Analysis Simulations



Significant periodicities found in 23 blazars. Many data types, > 3𝜎, and NRMSD¹ < 3%. Cutoff 40% UL.

Analysis

¹ Normalized Root Mean Square Deviation
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First Results from the Repository



Simulations with the Emmanoulopoulos algorithm [8] to study light curves with similar
characteristics (Probability Density Function and Power Spectral Density).

https://github.com/PaoloCO42/Emmanoulopoulos-Light-Curve-Simulations.git
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Analysis Emmanoulopoulos Simulations

https://github.com/PaoloCO42/Emmanoulopoulos-Light-Curve-Simulations.git


Analysis

Selected a subsample, for each source (and each sampling 
and flux type) we perform 1 000 000 simulations.

The significance is given by the number of times higher
peak values are found in the LSP of the simulations.
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Best Results and Golden Sample



Analysis

10
14

Best Results and Golden Sample



Machine Learning

t-Stochastic Neural Embedded neighbor
algorithm unsupervised [9] (t-SNE):

Calculates the probability that each high
vectors {𝑥𝑗} should be consider a neighbor of
{𝑥𝑖}  from the set of Euclidean distances

𝑥𝑗 − 𝑥𝑖 .

Since the vectors {𝑥} are compared point to 
point we opted for the normalized Difference 
Cumulative of the sorted periodogram Power.

LSP power → sort → cumulative →

 → difference (𝑎𝑖+1 –  𝑎𝑖) → normalize
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Pink / Red Noise Simulation

Signal Simulation



Machine Learning

t-SNE produces a simplified map where 
the axes of this 2D space have no 
proper labels or meaning.

With this type of input the simulations 
can be distinguished.
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Characteristics of the simulations:

SNR = 1,  −2.0 < 𝛿𝑛𝑜𝑖𝑠𝑒 < +0.5

−𝛿



Machine Learning

With the sources around 60 of them are clustered near the golden sample. 13
14



Outlook

• Periodicities in 1% (similar sources in a previous work of Peñil et
al. [2]) of variable sources with 16 years data from LCR, and a
golden sample of 6 sources.

• t-SNE method seems to bring out a larger cluster, but not
separated enough.

• Increase the complexity of noise and signal simulation to obtain
similar morphology in the map and try adding different types of
input data (also multiwavelength).

• We do not exclude other machine learning methods, that may
be better suited to the data and the goal.

• Comparing spectral models with a Bayesian approach for the
golden sample for a more robust analysis.

14
14



Outlook

• Periodicities in 1% (similar sources in a previous work of Peñil et
al. [2]) of variable sources with 16 years data from LCR, and a
golden sample of 6 sources.

• t-SNE method seems to bring out a larger cluster, but not
separated enough.

• Increase the complexity of noise and signal simulation to obtain
similar morphology in the map and try adding different types of
input data (also multiwavelength).

• We do not exclude other machine learning methods, that may
be better suited to the data and the goal.

• Comparing spectral models with a Bayesian approach for the
golden sample for a more robust analysis.

14
14



Outlook

• Periodicities in 1% (similar sources in a previous work of Peñil et
al. [2]) of variable sources with 16 years data from LCR, and a
golden sample of 6 sources.

• t-SNE method seems to bring out a larger cluster, but not
separated enough.

• Increase the complexity of noise and signal simulation to obtain
similar morphology in the map and try adding different types of
input data (also multiwavelength).

• We do not exclude other machine learning methods, that may
be better suited to the data and the goal.

• Comparing spectral models with a Bayesian approach for the
golden sample for a more robust analysis.

14
14



[1] M. Ackermann, et al., “Multiwavelength evidence for quasi-periodic modulation in the gamma-ray 
blazar pg 1553+113”, The Astrophysical Journal, vol. 813, p. L41,Nov 2015.

[2] P. Peñil, et al., “Systematic Search for γ-Ray Periodicity in Active Galactic Nuclei Detected by the 
Fermi Large Area Telescope”, ApJ, vol. 896, p. 134, June 2020.

[3] S. Komossa, “Observational evidence for binary black holes and active double nuclei”, Memorie 
della Società Astronomica Italiana, vol. 77, p. 733, 2006. 

[4] M. Tavani, Marco, et al. "The blazar PG 1553+ 113 as a binary system of supermassive black holes” 
, ApJ 854.1 (2018): 11.

[5] G. Foster, “Wavelets for period analysis of unevenly sampled time series”, AJ, vol. 112, pp. 1709–
1729, Oct. 1996.

[6] J. D. Scargle, “Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis 
of unevenly spaced data”, ApJ, vol. 263, pp. 835–853, Dec. 1982.

[7] J. T. VanderPlas, “Understanding the Lomb-Scargle Periodogram”, ApJS, vol. 236, p. 16, May 
2018.

[8] D. Emmanoulopoulos, I. M. McHardy, and I. E. Papadakis. "Generating artificial light curves: 
revisited and updated." Monthly Notices of the Royal Astronomical Society 433.2 (2013): 907-927.

[9] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE“, Journal of Machine Learning 
Research 9 (86), 2579–2605, 2008.

Bibliography



Backup Slides



Time series projection onto a model function (Morlet) [3].

Weighted Wavelet Z-transform (WWZ)

https://doi.org/10.1175/1520-
0477(1998)079<0061:APGTWA>2.0.CO;2

𝑊 = 
𝑘

𝑁

𝑥 𝑡𝑘 𝐹∗(𝑡𝑘)

With the S-matrix 𝑆𝑎𝑏 = 𝐹𝑎|𝐹𝑏  as our metric tensor with statistical 
weights 𝑤 in it, then the inner product of two function is:

𝑓|𝑔 = 

𝑎



𝑏

𝑆𝑎𝑏  𝑓𝑎 𝑔𝑏

Hence, using the variations  𝑉𝑥 = 𝑥|𝑥 − 1|𝑥 2  and 𝑉𝑅 = 𝑅|𝑅 − 1|𝑅 2 
where the first is variations of the data and the second of the residual 
vector.

The WWZ is defined as:

𝑍 =
𝑁𝑒𝑓𝑓 − 3 𝑉𝑅

2(𝑉𝑥 − 𝑉𝑅)

Where Neff = Τσ 𝑤𝛼
2 σ𝑤𝛼

2 . 

𝐹(𝑡) 𝐹∗(ω)

https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2


Square module of the Discrete Fourier transform. In addition to the changes by Scargle [4] we take 
into account some consideration by Vanderplas [5].

Lomb-Scargle Periodogram (LSP)

Signal and noise: 𝑥𝑗 = 𝑥 𝑡𝑗 = 𝑥𝑆 𝑗 + 𝑟𝑗      Classic periodogram:  𝑃𝑥 𝜔 =
1

𝑁
𝐷𝐹𝑇𝑥 𝜔 2 =

1

𝑁
σ𝑗=1

𝑁 𝑥 𝑡𝑗 𝑒−𝑖𝜔𝑡𝑗
2

Not useful in case of noisy data. Spectral Leakage.

Discrete Fourier Transform:

𝐷𝐹𝑇𝑥 𝜔 = 𝑁/2 
𝑗=1

𝑁

𝑥(𝑡𝑗)(𝐴(𝜔) cos 𝜔𝑡𝑗 + 𝑖𝐵(𝜔) sin𝜔𝑡𝑗)

If 𝐴 𝜔 = 𝐵(𝜔) = 2/𝑁 we obtaing the classic periodogram. Lomb-Scargle changes:

𝐴 𝜔 = 

𝑗

cos2 𝜔𝑡𝑗

−1/2

 ;  𝐵 𝜔 = 

𝑗

sin2 𝜔𝑡𝑗

−1/2

Modified periodogram:

 𝑃𝑥 𝜔 =
1

2

σ𝑗 𝑥𝑗 cos 𝜔(𝑡𝑗−𝜏)
2

σ𝑗 𝑥𝑗 cos2 𝜔(𝑡𝑗−𝜏)
+

σ𝑗 𝑥𝑗 sin 𝜔(𝑡𝑗−𝜏)
2

σ𝑗 𝑥𝑗 sin2 𝜔(𝑡𝑗−𝜏)
       with        tan 2𝜔𝜏 =

σ𝑗 sin 2𝜔𝑡𝑗

σ𝑗 cos 2𝜔𝑡𝑗



To compare peak height with background and spurious peaks.

Probability that a peak of a certain height 𝑍 will be found from a data set consisting of white noise.

❖  Naive

The cumulative probability of observing a value less than 𝑍 with white noise is 𝑃(𝑍) = 1 − 𝑒−𝑍 .

𝐹𝐴𝑃𝑁𝑎𝑖𝑣𝑒 (𝑍) = 1 − 𝑃 𝑍
𝑁𝑒𝑓𝑓

❖  Bootstrap

       Randomization of the time series, high computational cost. Simulations required: 𝑁=10/𝑟, for a
       false positive rate 𝑟.

❖  Baluev

       Extreme value theory for random processes. Upperbound for the FAP.

False Alarm Probability (FAP)



From Vanderplas, 2016 [5]

Bootstrap is a the most reliable method, Naive overestimates the significance, while Baluev 
underestimates it.

From the FAP we extrapolate a fictitious number of 𝜎.

False Alarm Probability (FAP)



Two hypothesis: noise H and periodic signal K. FAP comes from the probability distribution of 
maxima in periodograms under H hypothesis.

Least-squares periodogram:

𝑧 𝑓 =
𝜒𝐻

2 − 𝜒𝐾
2 𝑓

2

With the theory of random processes we estimate the FAP:

𝐹𝐴𝑃𝐵𝑎𝑙𝑢𝑒𝑣 𝑧, 𝑓𝑚𝑎𝑥 = 1 − exp(−𝑊𝑒−𝑧 𝑧 )

𝑊 = 𝑓𝑚𝑎𝑥𝑇𝑒𝑓𝑓   ;    𝑇𝑒𝑓𝑓 = 4𝜋𝐷𝑡    ;     𝐷𝑡 = ഥ𝑡2 − ҧ𝑡2

Baluev FAP



False Alarm Probability (FAP)



Time Series and Noise Simulations

¹ Half Width at Half Maximum

White Noise simulations as uniform randomization of Blazar light curves.

A period with significance > 2.5𝜎 is found in less then 1% simulations.



Emmanoulopoulos Simulations

Simulations with the Emmanoulopoulos algorithm [6] to study light curves with similar
characteristics (Probability Density Function and Power Spectral Density).

https://github.com/PaoloCO42/Emmanoulopoulos-Light-Curve-Simulations.git

First step:
From the PSD make Timmer-König simulation: 𝑥𝑇𝐾 (𝑡), perform the DFT (Discrete Fourier Function) on it and
take the amplitude 𝐴𝑇𝐾.

Second step:
Take 𝑥0(𝑡), White Noise simulation obtained from the PDF, perform the DFT and take phase 𝜙0.

Third step:
Combine 𝐴𝑇𝐾 and 𝜙0 to have a 𝑋(𝑗) in the frequency domain, perform the IDFT (Inverse) obtaining 𝑥𝐶(𝑡).

Fourth step:
Sort 𝑥𝐶(𝑡) in descending order and replace the values 𝑥𝐶 with 𝑥0, also sorted in descending order, obtaining
𝑥𝑖(𝑡), where 𝑖 is the number of iterations.

Fifth step:
Replacing 𝑥0(𝑡) with the new 𝑥𝑖(𝑡), repeat the process from the second step until it converges
i.e. when 𝑥𝑖(𝑡) and 𝑥𝑖−1(𝑡) have the same PSD.

https://github.com/PaoloCO42/Emmanoulopoulos-Light-Curve-Simulations.git


Emmanoulopoulos Simulations



Golden Sample



Golden Sample



Pulsar



Apparent statistically significant observation, which has arisen from searching a large parameter
space.

The Trial Factor (N) is used to account this effect. It is the ratio between the probability of
observing a possible excess at some fixed point, to the probability of observing it anywhere in the
range.

The local significance is reduced to the global significance (local>global).

𝑝𝐺𝐿𝑂𝐵𝐴𝐿 = 1 − 1 − 𝑝𝐿𝑂𝐶𝐴𝐿
𝑁

In this case someone considers 𝑁 = 𝑃 ⋅ 𝐵, where 𝑃 is the number of independent periods and 𝐵
is the number of blazars.

In a previous work on the catalog: 𝑁 = 35 ⋅ 351 = 12,285, so a local 5.5 𝜎 become 2.8 𝜎 global
significance). While in a paper about PG 1553+113, is 𝑁 = 𝑃 ⋅ 1 = 43.

Look-elsewhere effect



t-SNE, theory



t-SNE, Simulations

SNR = 10

Slightly different input type



t-SNE, Sources
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