

Neutron Stars - Part 1

Cecilia Chirenti

Fermi Summer School - Lewes DE - May 29 2024

Introductions

4 (Visiting) Associate Research Scientist UMD/GSFC/CRESST

2 Postdoc at MPI for Gravitational Physics Albert Einstein Institute (AEI), Germany

3 Assistant (and then Associate) Professor of Applied Mathematics at UFABC, Brazil

I Physics BSc and PhD at University of São Paulo, Brazil

Neutron stars: how it all began

Jocelyn Bell - 1967

Little Green Men? LGM1, LGM2, LGM3

UFABC

The discovery of pulsars

"telescope" in Cambridge

Physics Nobel Prize 1974

Breakthrough Prize 2018

How do we observe neutron stars?

Radio pulsars

Crab Nebula

X-ray binaries

Gravitational waves

LIGO

WUFABC

Stellar Merger Model for a Short-Duration Gamma-Ray Burst

Kilonova

Short gamma-ray burst

Fermi

How are neutron stars born? Supernovae! (*not* type Ia)

The initial mass determines the fate of the star

^{1st} supernova observation in 184 AD!

) UFABC

"The heavens are not immutable?"

 Poll:

 Are supernovae rare events? Estimate:

 One per galaxy per century!

 What is the total number of supernovae per second in the universe?

 a) 30,000; b) 30; c) 0.03; d) 0.00003; e) 0.000003 /s

代名臣奏議卷之三 朝宗廟社稷之福天下生靈之妻養國家休戚治亂之為伏頭陸下畏服、太平之風可翹足引領而体之事業要注而仰成之若然到睑 明如是之著那臣愚伏 含人知 五輪務當 間稔 院范 妖星 忠賢剛正 百 謪 望陛下讀天 家龍泉之王百 下頭火 者時 小田 忍 發恩四之 聖意清 儲素朝 力惟廷以 也多 欲黑西 氯 行標靖三 T 者 明公 25

The crab supernova was observed by Chinese astronomers in 1054 AD: a guest star

Why neutrons?

S. Chandrasekhar and wife - 1939

Pauli's exclusion principle (fermions) Stellar equilibrium

Gas pressure balances the gravitational attraction

Maximum mass: white dwarfs $\sim 1.4 M_{\odot}$ (Chandrasekhar limit)

UFABC

neutron stars $\sim 2.2 - 3M_{\odot}$

Hydrostatic equilibium

 $GM(r)\rho(r)$

Group discussion question

Can there be stars more compact than neutron stars?

What would they look like?

What are stars made of?

Equation of State (EOS)

Inside a neutron star

- * The core of a neutron star is at several times the nuclear density
- * The composition is unknown:
 - * Nucleons?
 - * Strange matter?
 - * Quark matter?
 - * Condensates?

http://www.astroscu.unam.mx/neutrones/NS-picture/NStar/NStar-I.gif

A particle physics problem?

Particle physics vs. Curved spacetime

Figure: Adapted from Ray et al. 2019

Maximum Mass

If the central density increases, then the total mass must increase, right...?

Tolman-Oppenheimer-Volkoff (TOV) eq.

$$\frac{dP}{dr} = -\frac{G}{r^2} \left[\rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + \frac{4\pi r^3 P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{rc^2} \right]^{-1}$$

(this is the **relativistic** version of the Newtonian hydrostatic equilibrium: take $c \rightarrow \infty$)

Each proposed EOS *model* produces a different curve. Which are the *viable* models?

The mass radius curves as parametrized by the central density of the star

Observed high masses

Demorest et al. 2010

softer EOSs predict a lower maximum mass and more compact stars

A viable EOS must have a maximum mass larger than the highest observed masses

How to measure the mass of a neutron star (in a binary system)

Doppler effect

If we can measure *P* - period of the binary $v_1 = \frac{2\pi}{P} a_1 \sin i$ (Doppler)

Using Kepler's 3rd law $\frac{P^2}{a^3} = \frac{4\pi^2}{G(m_1 + m_2)}$ we can write $f_1(m_1, m_2, i) \equiv \frac{m_2^3 \sin^3 i}{(m_1 + m_2)^2} = \frac{Pv_1^3}{2\pi G}$

 $a = a_1 + a_2$ $m_1 a_1 - m_2 a_2 = 0$ $Q = m_1 / m_2$ UFABC

If we are also able to measure f_2 (*how?*) we can find $m_1 = \frac{f_1 q (1+q)^2}{\sin^3 i}$ and from f_2/f_1 we have q.

Observed Neutron Star masses

UFABC

Group discussion question

How can we measure the radius of a neutron star?

What accuracy should we have?

NICER

The best current estimate for the radius of a $M = 1.4M_{\odot}$ is $R = (12 \pm 1)$ km, obtained by NICER (Neutron star Interior Composition ExploreR), onboard the International Space Station. NICER uses X-ray observations and waveform modeling for the emission from hotspots in isolated neutron stars.

Lunch Break

We'll be back on Friday for: Neutron Stars - Part II

