

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Studying Gamma-Ray Bursts Using COSI

Eliza Neights (George Washington University) on behalf of the COSI science team

COSI Collaboration

University of California

- John Tomsick (Principal Investigator, UCB)
- Steven Boggs (Deputy PI, UCSD)
- Andreas Zoglauer (Project Scientist, UCB)

Naval Research Laboratory

• Eric Wulf (Electronics & BGO shield lead)

Goddard Space Flight Center

- Albert Shih (CHRS lead)
- Carolyn Kierans (Data pipeline co-lead)

Northrop Grumman

Institutions of Co-Investigators and Collaborators

- Clemson University \bullet
- Louisiana State University \bullet
- Los Alamos National Laboratory \bullet
- Lawrence Berkeley National Laboratory
- IRAP, France
- INAF & ASI, Italy \bullet
- Kavli IPMU & Nagoya University, Japan \bullet
- JMU (Würzburg) & JGU (Mainz), Germany \bullet

- NTHU, Taiwan •
- University of Hertfordshire, UK •
- •
- LAPTh-CNRS, France
- Yale University •
- Stanford University
- Washington University, St. Louis

Centre for Space Research, North-West University, South Africa

Deutsches Elektronen Synchrotron (DESY), Germany

COSI's Science Goals

Uncover the origin of Galactic positrons

Reveal Galactic element formation

Probe the physics of multimessenger events

Gain insight into extreme environments with polarization

Tomsick et al. 2023

COSI's Energy Range

Compton Spectrometer & Imager (COSI)

- Soft gamma-ray (0.2-5 MeV) telescope
- 2-year prime mission with a planned launch in 2027
- Imaging, spectroscopy, & polarimetry
- Low-Earth orbit with ~0° inclination
- Daily full sky survey and large field-of-view (25% of sky)

Tomsick et al. 2023

COSI Instrument

COSI detectors

Detectors: 24 x 24 x 12 cm

COSI Instrument

COSI detectors and shields

Detectors: 24 x 24 x 12 cm

Gamma-Ray Bursts (GRBs)

• •

.

· · · ·

Faster shell

Low-energy

gamma rays

Slower shell

Black hole or magnetar engine

Magnetic reconnection

.

Colliding shells emit low-energy gamma rays (internal shock wave)

Internal shock

•

•

Gamma-Ray Bursts (GRBs)

•

• • •

•

Low

Low-energy gamma rays

Black hole or magnetar engine

· .

·

.

Inverse Compton scattering

 $\mathbf{\Lambda}\mathbf{\Lambda}\mathbf{A}$

Synchrotron

radiation

· · · ·

Gamma-Ray Bursts (GRBs)

Low-energy gamma rays

Black hole or magnetar engine

Prompt emission

~ms to minutes

GRB Open Questions

What are the progenitors?

Are the magnetic fields ordered or random?

Black hole or magnetar engine

What is the jet geometry?

Where in the jet are gamma-rays emitted?

What are the emission mechanisms?

GRB Open Questions

sGRB & gravitational wave coincident detections

What are the progenitors?

Are the magnetic fields ordered or random?

Black hole or magnetar engine

What is the jet geometry?

Where in the jet are gamma-rays emitted?

What are the emission mechanisms?

GRB Open Questions

What are the

progenitors?

Are the magnetic fields ordered or random?

Black hole or magnetar engine

What is the jet geometry?

Spectra & polarization measurements

Where in the jet are gamma-rays emitted?

What are the emission mechanisms?

COSI's Science Goals

Now COSI

Uncover the origin of Galactic positrons

Reveal Galactic element formation

Probe the physics of multimessenger events

Gain insight into extreme environments with polarization

COSI's GRB Science Capabilities

- Short GRBs may have coincident gravitational wave detections
- COSI will provide <2.5° short GRB localizations within an hour Goal in 2 years: ≥10 short GRBs

- Gain insight into extreme environments with polarization Polarization measurements can be used to constrain GRB models COSI will measure prompt emission polarization of GRBs
- **Goal in 2 years:** >30 GRB polarization measurements

Probe the physics of multimessenger events

COSI's GRB Science Capabilities

- Short GRBs may have coincident gravitational wave detections
- COSI will provide <2.5° short GRB localizations within an hour ullet**Goal in 2 years:** ≥10 short GRBs

- Gain insight into extreme environments with polarization Polarization measurements can be used to constrain GRB models • COSI will measure prompt emission polarization of GRBs **Goal in 2 years:** >30 GRB polarization measurements

Probe the physics of multimessenger events

Short GRB-GW Coincidence

- GRB 170817A & GW170817 confirmed binary neutron star merger as sGRB progenitor
- Used time delay between gravitational waves and gammarays to probe physics of GRB jet and fundamental physics

COSI's Short GRB Sensitivity & Alerts

- COSI's goal: detect ≥10* sGRBs
 - ~0.2-1 joint GW detections
 - *Detailed sGRB rate calculation is underway
- Alerting the community
 - Onboard trigger algorithm •
 - Data rapidly downlinked by TDRSS •
 - Localizations & classifications sent to community

COSI's GRB Science Capabilities

- **Goal in 2 years:** ≥10 short GRBs

- ullet
- lacksquare

Probe the physics of multimessenger events Short GRBs may have coincident gravitational wave detections COSI will provide <2.5° short GRB localizations within an hour

Gain insight into extreme environments with polarization Polarization measurements can be used to constrain GRB models COSI will measure prompt emission polarization of GRBs **Goal in 2 years:** >30 GRB polarization measurements

GRB Polarization

Polarization measurements will help to distinguish between GRB prompt emission models

GRB Polarization

Constraining GRB Physics with COSI

- COSI's goal: measure polarization of >30 GRBs
- Distinguish between synchrotron ulletwith an ordered magnetic field & Compton drag models
- Accurate estimation of COSI's ability to distinguish between models is underway

Conclusion

- COS/ will be launching in 2027 and will provide imaging, spectral analysis, and polarimetry
- sGRB detections & rapid localizations
 - enable multimessenger astrophysics
 - multi-wavelength follow-up
- Spectra & polarization measurements will enhance our understanding of GRB physics

Get Involved!

Data Challenge 2

- First release of high-level analysis tools (cosipy)
- Become familiar with cosipy and COSI data

Data Challenge 2

hub.com/cositools/ ttps:/ cosi-data-challenge-2

