Exponential Methods for Anisotropic Diffusion (in the context of Cosmic Rays)

Pranab J Deka Lukas Einkemmer Ralf Kissmann

My Background

universität innsbruck

Exponential Integrators for Magnetohydrodynamics and Cosmic Ray Transport

PhD Thesis

- solve time-dependent ODEs/PDEs using computers

- develop mathematical and computational algorithms for HPC systems

- applications: MHD, anisotropic diffusion (in the context of cosmic ray diffusion)

Pranab Jyoti Deka

Cosmic Rays

Discovered by *Victor Francis Hess* (24 June 1883 – 17 December 1964)

Nobel Prize in Physics (1936)

Professor – University of Innsbruck (1931)

Cosmic Rays

- Highly-energetic charged particles
- (Galactic) CRs are transported mainly via diffusion
- CR diffusion morphology and strength of the (stronger) large-scale ordered Galactic magnetic field and the (weaker) small-scale turbulent fields
- CRs are diffused along the ordered field lines CR diffusion is *anisotropic*

Galactic Cosmic Rays

$$\begin{split} \frac{\partial \psi(\vec{r}, p, t)}{\partial t} &= S(\vec{r}, p, t) - \nabla \cdot (\vec{v}\psi) + \nabla \cdot (\mathcal{D}\nabla\psi) \\ &- \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{\psi}{p^2} \right) \right) + \frac{\partial}{\partial p} \left(\dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right) \\ &- \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi \end{split}$$

- advect through the Galaxy
- diffuse, in space, upon scattering
- reaccelerate (diffusion in momentum space)
- momentum losses (synchrotron, IC, bremstrahlung)
- fragment and decay (create new elements/isotopes)

Galactic Cosmic Rays

$$\begin{split} \frac{\partial \psi(\vec{r}, p, t)}{\partial t} &= S(\vec{r}, p, t) - \nabla \cdot (\vec{v}\psi) + \nabla \cdot (\mathcal{D}\nabla\psi) \\ &- \frac{\partial}{\partial p} \left(p^2 D_{pp} \frac{\partial}{\partial p} \left(\frac{\psi}{p^2} \right) \right) + \frac{\partial}{\partial p} \left(\dot{p}\psi - \frac{p}{3} (\nabla \cdot \vec{v})\psi \right) \\ &- \frac{1}{\tau_f} \psi - \frac{1}{\tau_r} \psi \end{split}$$

GOAL

We want to develop algorithms suitable for solving this equation over long periods of time on modern HPC systems (such as GPUs)

Anisotropic Diffusion

Anisotropic diffusion + advection + time-dependent sources

$$\frac{\partial u}{\partial t} = \nabla \cdot (\mathcal{D} \nabla u) + \nabla \cdot (\vec{a}u) + \mathbf{S}(x, y, t);$$

Anisotropic diffusion
$$\mathcal{D} = \begin{bmatrix} D_{xx}(x,y) & D_{xy}(x,y) \\ D_{yx}(x,y) & D_{yy}(x,y) \end{bmatrix}$$

Anisotropic Diffusion

8

Exponential methods

$$\frac{\partial u}{\partial t} = f(u)$$
$$u^{n+1} = u^n + f(u^n)\Delta t$$
$$u^{n+1} = u^n + \text{exponential-like function}(f(u^n))\Delta t$$

Exponential methods

Exponential midpoint (2nd order):

$$u^{n+1} = u^n + \varphi_1(\mathcal{A}\Delta t) \left(\mathcal{A}u^n + S\left(t^n + \frac{1}{2}\Delta t\right) \right) \Delta t$$

 $\frac{\partial u}{\partial t} = \nabla \cdot (\mathcal{D} \nabla u) + \nabla \cdot (\vec{a}u) + \mathbf{S}(x, y, t);$

$$\mathcal{A} =
abla (\mathcal{D} \,
abla (\cdot)) +
abla (ec{a})$$

Exponential methods

Exponential midpoint (2nd order):

$$u^{n+1} = u^n + \varphi_1(A\Delta t) \left(Au^n + S\left(t^n + \frac{1}{2}\Delta t\right)\right) \Delta t$$

$$\varphi_1(z) = \frac{\exp(z) - 1}{z}$$

Approximate the action of the exponential-like functions on vectors using polynomial interpolation

 $\mathcal{A} =
abla (\mathcal{D} \,
abla (\cdot)) +
abla (ec{a})$

Exponential methods for Anisotropic Diffusion

Exponential midpoint (2nd order):

$$u^{n+1} = u^n + \varphi_1(A\Delta t) \left(Au^n + S\left(t^n + \frac{1}{2}\Delta t\right)\right) \Delta t$$

$$\varphi_1(z) = \frac{\exp(z) - 1}{z}$$

Approximate the action of the exponential-like functions on vectors using polynomial interpolation

 $\mathcal{A} =
abla (\mathcal{D} \,
abla (\cdot)) +
abla (ec{a})$

Exponential methods for Anisotropic Diffusion

What am I doing now?

	UVEN				
Centre Education	for mathematical Research Seminars	Plasma As News Staf	strophysi f Intranet	cs	
iPic3D Public		(⊙ Watch 28 👻	양 Fork 55 👻 🚖	Starred 70 🔹
양 GPU_OpenACC - 양 15 Branches ⓒ 6 Tags This-branch is 10 commits ahead of Coils.	Q Go to file	t Add file	Code -	About Particle-in-Cell code us moment method	ø sing the implicit
Pranab-JD Minot changes		b9a6095 · 3 days ago	🕚 477 Commits	 小 Activity E Custom properties ▲ 70 store 	
ConfigFile/src	Add message for missing key Add files via upload		9 years ago last year	♀ 70 stars ● 28 watching ♀ 55 forks Report repository	
H5hut-io	H5HU?T-io from ECsim new master		2 years ago		

What am I doing now?

Home CoE Focus - Codes Partners Contact Highlights - Events - Training

Scalable Parallel Astrophysical Codes for Exascale SPACE is a

SPACE is a newly-funded EU Centre of Excellence focused on astrophysical and cosmological applications

From January 1st, 2023 for 48 months Budget of nearly 8 million euros

What am I doing now?

Partners CINECA UNIVERSITÀ **KU LEUVEN** INAF **DI TORINO** ISTITUTO NAZIONALE DI ASTROEISICA IT4I GOETHE CN CRAI LUDWIG-MAXIMILIANS UNIVERSITÄT UNIVERSITÄT MÜNCHEN CENTRE DE BECHERICHE ASTROPHYSICUE DE LYCA FRANKFURT AM MAIN **E4** UNIVERSITY **ENGINSOFT** OF OSLO FOUNDATION FOR RESEARCH AND TECHNOLOGY - HELLAS COMPUTER ENGINEERING

