Exponential Methods for Anisotropic Diffusion

(in the context of Cosmic Rays)

Pranab J Deka
Lukas Einkemmer
Ralf Kissmann

My Background

\square universität innsbruck

Exponential Integrators for Magnetohydrodynamics and Cosmic Ray Transport

- solve time-dependent ODEs/PDEs using computers
- develop mathematical and computational algorithms for HPC systems
- applications: MHD, anisotropic diffusion (in the context of cosmic ray diffusion)

PhD Thesis

Cosmic Rays

Discovered by Victor Francis Hess (24 June 1883-17 December 1964)

Nobel Prize in Physics (1936)
Professor - University of Innsbruck (1931)

August 1912

Cosmic Rays

- Highly-energetic charged particles
- (Galactic) CRs are transported mainly via diffusion
- CR diffusion - morphology and strength of the (stronger) large-scale ordered

Galactic magnetic field and the (weaker) small-scale turbulent fields

- CRs are diffused along the ordered field lines - CR diffusion is anisotropic

Galactic Cosmic Rays

$$
\begin{aligned}
\frac{\partial \psi(\vec{r}, p, t)}{\partial t} & =S(\vec{r}, p, t)-\nabla \cdot(\vec{v} \psi)+\nabla \cdot(\mathcal{D} \nabla \psi) \\
& -\frac{\partial}{\partial p}\left(p^{2} D_{p p} \frac{\partial}{\partial p}\left(\frac{\psi}{p^{2}}\right)\right)+\frac{\partial}{\partial p}\left(\dot{p} \psi-\frac{p}{3}(\nabla \cdot \vec{v}) \psi\right) \\
& -\frac{1}{\tau_{f}} \psi-\frac{1}{\tau_{r}} \psi
\end{aligned}
$$

- advect through the Galaxy
- diffuse, in space, upon scattering
- reaccelerate (diffusion in momentum space)
- momentum losses (synchrotron, IC, bremstrahlung)
- fragment and decay (create new elements/isotopes)

Galactic Cosmic Rays

$$
\begin{aligned}
\frac{\partial \psi(\vec{r}, p, t)}{\partial t} & =S(\vec{r}, p, t)-\nabla \cdot(\vec{v} \psi)+\nabla \cdot(\mathcal{D} \nabla \psi) \\
& -\frac{\partial}{\partial p}\left(p^{2} D_{p p} \frac{\partial}{\partial p}\left(\frac{\psi}{p^{2}}\right)\right)+\frac{\partial}{\partial p}\left(\dot{p} \psi-\frac{p}{3}(\nabla \cdot \vec{v}) \psi\right) \\
& -\frac{1}{\tau_{f}} \psi-\frac{1}{\tau_{r}} \psi
\end{aligned}
$$

GOAL

We want to develop algorithms suitable for solving this equation over long periods of time on modern HPC systems (such as GPUs)

Anisotropic Diffusion

Anisotropic diffusion + advection + time-dependent sources

$$
\frac{\partial u}{\partial t}=\nabla \cdot(\mathcal{D} \nabla u)+\nabla \cdot(\vec{a} u)+S(x, y, t)
$$

Anisotropic diffusion $\mathcal{D}=\left[\begin{array}{ll}D_{x x}(x, y) & D_{x y}(x, y) \\ D_{y x}(x, y) & D_{y y}(x, y)\end{array}\right]$

Anisotropic Diffusion

Exponential methods

$\frac{\partial u}{\partial t}=f(u)$
$u^{n+1}=u^{n}+f\left(u^{n}\right) \Delta t$
$u^{n+1}=u^{n}+$ exponential-like function $\left(f\left(u^{n}\right)\right) \Delta t$

Exponential methods

$$
\begin{aligned}
& \text { Exponential midpoint (2 } 2^{\text {nd }} \text { order): } \\
& \qquad u^{n+1}=u^{n}+\varphi_{1}(\mathcal{A} \Delta t)\left(\mathcal{A} u^{n}+S\left(t^{n}+\frac{1}{2} \Delta t\right)\right) \Delta t
\end{aligned}
$$

$$
\frac{\partial u}{\partial t}=\nabla \cdot(\mathcal{D} \nabla u)+\nabla \cdot(\vec{a} u)+S(x, y, t) ;
$$

$$
\mathcal{A}=\nabla(\mathcal{D} \nabla(\cdot))+\nabla(\vec{a})
$$

Exponential methods

Exponential midpoint (2 $2^{\text {nd }}$ order):
 $$
u^{n+1}=u^{n}+\varphi_{1}(\mathcal{A} \Delta t)\left(\mathcal{A} u^{n}+S\left(t^{n}+\frac{1}{2} \Delta t\right)\right) \Delta t
$$

$$
\mathcal{A}=\nabla(\mathcal{D} \nabla(\cdot))+\nabla(\vec{a})
$$

$$
\varphi_{1}(z)=\frac{\exp (z)-1}{z}
$$

Approximate the action of the exponential-like functions on vectors using polynomial interpolation

Exponential methods for Anisotropic Diffusion

Exponential midpoint (2 ${ }^{\text {nd }}$ order):

$$
u^{n+1}=u^{n}+\varphi_{1}(\mathcal{A} \Delta t)\left(\mathcal{A} u^{n}+S\left(t^{n}+\frac{1}{2} \Delta t\right)\right) \Delta t
$$

$$
\mathcal{A}=\nabla(\mathcal{D} \nabla(\cdot))+\nabla(\vec{a})
$$

$$
\varphi_{1}(z)=\frac{\exp (z)-1}{z}
$$

Approximate the action of the exponential-like functions on vectors using polynomial interpolation

Exponential methods for Anisotropic Diffusion

What am I doing now?

What am I doing now?

```
SPACE,
```


Scalable Parallel Astrophysical Codes

 for Exascale
SPACE is a newly-funded EU Centre of Excellence focused on astrophysical and cosmological applications

From January $1^{\text {st }}, 2023$ for 48 months
Budget of nearly 8 million euros

What am I doing now?

Partners

CINECA

UNIVERSITY
OF OSLO

HITS

