About me

- Physics Major, Cornell U.
 - Discovered astrophysics and a love for experiments through senior level classes and internships
- Ph. D. in Physics from Univ. Maryland, College Park
 - Searched for variability in the very-high-energy gamma-ray sky using Milagro, a water Cherenkov telescope
- Post Doc U. Chicago/Argonne
 - Integrated data acquisition for VERITAS imaging atmospheric Cherenkov telescope array and hunted cosmic-ray signatures in Cherenkov light
- NASA Goddard Research Astrophysicist
 - Flight performance and simulation studies, variability and spatial analysis studies using Fermi LAT data
 - Project Scientist/former deputy for Fermi Gamma-ray Space Telescope; Chief, Astroparticle Physics Laboratory

An Introduction to Fermi

Liz Hays

Fermi Summer School 2024

THE ELECTROMAGNETIC SPECTRUM

THE ELECTROMAGNETIC SPECTRUM

Energy \propto Frequency

Gamma rays are the highest energy light

The Fermi

Large Area Telescope (LAT)

Large field of view

- 1/5 of the sky
- >85% of the sky in 3 hrs

Broad energy range (20 MeV - >300 GeV)

Wait a minute...

You may think of a typical telescope like this

Collect light through reflection or refraction and record the image

Gamma rays do not reflect or refract easily Difficult to focus onto a camera or even detect. Blame physics!

- Coherent Scattering (electron remains bound to atom)
- Photoelectric Effect
- Compton Scattering
- Electron (e⁻) positron (e⁺) Pair Production
- Details depend on composition and on density of the material and photon energy

Credit: Richard Kroeger

Gamma-ray telescopes are more like this

Instrument simulations, background models

More computers

Observer

Black Holes, compact objects, effects of stellar explosions...

Collecting light through creative absorption

וֹ Computers

NASA's Explorer XI detected cosmic gamma rays

Launched April 1961

- First gamma-ray satellite.
- Flew about 6 months and detected about 30 nonterrestrial gamma rays.
- Detector consisted of sandwich of crystal scintillator, CsI and NaI, in coincidence with a Cherenkov counter

Kraushaar et al., 1965

VELA Program discovers cosmic transients!

- Vela 5B gamma-ray detector operated from 1969 - 1979.
- Crystal scintillator gamma detectors (Nal and Csl)
- Great for counting, but not much spatial information.

June 1, 2023, was the **50th** anniversary of the discovery paper on gamma-ray bursts Klebesadel, Strong and Olsen, 1973, ApJ, 182, L85. doi:10.1086/181225 "Observations of Gamma-Ray Bursts of Cosmic Origin."

Kraushaar et al., 1972, ApJ, 177, doi:10.1086/151713.

- Tungsten

NASA SAS-2 studied Galactic emission

- Nov 1972 Jun 1973
- 35 MeV 1 GeV gamma rays
- Emphasis on Galactic plane following OSO-3 results
- Introduced spark chamber for tracking the electronpositron pair
- 4 radio pulsars and Cen A radio galaxy among other sources detected

Cerenkov

counter

ESA's COS-B catalogued the sky and mapped the Galaxy

Balloon Era and SN 1987: GRIS goes up!

and down...

GRIS – Gamma-ray Imaging Spectrometer flew 9 times between 1988 and 1995. It measured gamma-ray lines from SN 1987A.

BATSE and EGRET on NASA's Compton Gamma-ray Observatory

1991 - 2000

2704 BATSE Gamma-Ray Bursts

10-4 10-7 10-5 10^{-6} Fluence, 50-300 keV (ergs cm⁻²)

E > 100 MeV intensity map

1991 – 1996

COMPTEL and OSSE on CGRO

CGRO / COMPTEL 1.8 MeV, 5 Years Observing Time GAMMA RAY SPECTRUM OF SUPERNOVA 1987A 0.05 25 July - 8 Aug 1991 0.04 FLUX (COUNTS/s) 0.02 0.00 Uwe Oberlaci etal. May 22, 1997 -0.020.0 0,1 Intensity [ph cm² s' sr'] x 10* ENERGY (MeV) 0.00 0.16 0.33 0.49 0.65 0.82 0.98 1.14 1.31 1.47 1.63 1.80 1.96 2.12 2.29 2.45 2.61

1.8 MeV line emission

And now back to your regularly scheduled programming

- Physics makes gamma-ray observations hard
 - Gamma-ray telescopes are all about stacking cleverly instrumented materials
 - There is a bright side -- low attenuation makes gamma rays appealing for study of sources obscured at other wavelengths
- Earth's atmosphere requires most of the waveband to be observed from space (but not all!)
- Since the 1960s, we have learned that
 - The gamma-ray sky is highly variable even on very short timescales
 - Numerous sources from within our Galaxy and even distant extragalactic objects across the cosmos emit impressively short wavelengths
 - How do they do that? Stay tuned.

LAT is a Pair Conversion Telescope

Gamma ray converts to An anti-coincidence detector an e⁺ e⁻ pair in a high identifies and rejects density foil layer. incoming charged particles. The **tracks** of charged particles in the instrument 6 are recorded by sensors.

The photon energy is determined from measured energy deposited in the **calorimeter**.

The tracks are used to determine the direction of the gamma-ray source.

LAT Sky Coverage

-180

Gamma-ray Burst Monitor Detectors

The GBM detectors are made of scintillator material, sodium iodide (Nal) or bismuth germanate (BGO), that produce light when gamma rays strike them.

The low-energy detectors (Nal) are placed in different positions and directions. Transients are located using the difference in gamma-ray rates.

The high-energy detectors (BGO) provide sensitive spectral information that overlaps with the Nal detectors and extends measurements to higher energy.

High-energy detector

GBM Sky Coverage

spectrum.

Fermi results complement observations across the full spectrum and beyond.

Fermi instruments cover 8 decades of the electromagnetic

The Fermi Sky

Fermi's Science Menu

Gravitational Wave

The Fermi Bubbles: Evidence of past activity in the center of the Milky Way

Su, Slatyer, Finkbeiner, 2010, ApJ

Detected in xrays by eROSITA!

Predehl et al. 2020, Nature

Supernova Remnants, Pulsar Wind Nebulae, and gamma-ray binaries probe Galactic particle acceleration

Optical and gamma-ray signals reveal a common origin in novae

Most of the optical light from the nova comes from the shockwave producing the gamma rays

Aydi et al. 2020, Nature Astronomy

Pulsars are particle accelerating machines

NASA Goddard Space Flight Center

The Dynamic Gamma-ray Sky

Northern Hemisphere

Southern Hemisphere

This movie shows 1 day frames of LAT data over 1 year

Gamma-ray blazars reveal supermassive black hole activity

[Minutes since 2015-June-16 02:00:00 (UT)]

Variability over minutes probes very small regions within a plasma jet 5 billion light years away. Too small for shocks? Could this be magnetic-driven acceleration in the jet?

Ackermann et al. 2016, ApJL

Probing the structure of gamma-ray bursts

Jet collides with ambient medium (external shock wave)

39

Gravitational Waves and Light

Dec. 5, 2020

Abbott et al. 2017, ApJL, 848, 2

First joint detection of a gamma-ray burst and a binary neutron star merger seen in gravitational waves – GRB 170817A

- Confirmed origin of (many) short-duration gamma-ray bursts
- Known mass of initial and final remnants from GW
- Speed of gravity consistent with speed of light
- Measured time lag for jet emergence following merger
- Characterized relativistic jet launched from a newly formed black hole

"Brightest of all time" burst - GRB 221009A

Highest isotropic equivalent energy, fluence and peak flux

Observed variability and evolution of a highly-collimated jet from a collapsar

Fermi data reveal sources of proton acceleration in the Galaxy and candidate sources of extragalactic neutrinos.

Neutrino counterpart candidates have been found through follow-up searches of events and catalog correlations, e.g.

- TXS 0506+056, gamma-ray blazar
- NGC 1068, luminous Seyfert II galaxy detected by LAT •

2D cross-correlation study of gamma-ray and neutrino data finds that unresolved blazars could contribute up to 1% of the astrophysical neutrino flux at 100 TeV.

Likelihood, associations FGL, FHL, LAC, FLE, PSR

Not to scale

10-year Catalog (4FGL-DR2)

LAT catalogs: 4FGL-DR4 (14 years) • 4FGL-DR3 (12 years) 4LAC-DR3 (AGN) • 3FHL (high energy) • FGES (extended sources) • 2FAV (variable) • FLT (monthly transients)

 SNR (supernova remnants) • **3PC (pulsars)** • Solar Flares **GBM catalogs:**

• X-ray burst

https://fermi.gsfc.nasa.gov/ssc/d ata/access/lat/

Summary

- The Fermi Observatory carries 2 instruments, LAT and GBM, that observe most of the sky most of the time over 8 orders of magnitude in energy
 - The instruments are more sensitive than when launched (software!)
 - Can continue operating for the foreseeable future (no consumables or notable degradation)
- Gamma-ray science IS multi-wavelength science and multi-messenger science.
- Fermi has generated science results from close to home to some of furthest sources in the Universe
- Some sources in the gamma-ray sky are steady. Some extend over very large regions. The entire sky glows in gamma rays.
- Many sources in the gamma-ray sky vary, sometimes wildly
- Fermi finds new sources all the time. You can find out about them in public catalogs and publications and using online tools at the Fermi Science Support Center.
- During the rest of the school, we'll learn a selection of Fermi science and spend some time on the analysis of data from LAT and GBM.