

Clustering analysis of Fermi-LAT unidentified point sources

Fermi Summer School 1st June 2024

Cozzolongo G., Mitchell A., Spencer S., Malyshev D., Wach T., Unbehaun T.

ECAP, FAU Erlangen-Nürnberg

Fermi Point Source Catalog

- The catalog 4FGL-DR4 has **7194 sources**.
- To date, 2065 are unclassified sources.
- Extended source are 81.
- In the Galactic plane, are there extended sources currently being described as a bunch of unidentified point sources?

The case of 4FGL J1813.1-1737e

-18.50:00.0 -19:00:00.0 **Declination** (J2000) 10:00.0 20:00.0 30:00.0 40:00.0 50:00.0 12:00.0 11:00.0 18:10:00.0 09:00.0 13:00.0 Right Ascension (J2000) 30 50 10^{-10} HESS J1813-178 HESS compact source LAT extended source cm⁻²s⁻¹) (erg ਤ੍ਹ∣ਝ ™ 10⁻¹² 10^{-13} 10^{14} 10^{8} 10^{13} 10^{6} 10^{7}

Credit: Araya 2018.

Energy (eV

Unidentified Fermi-LAT point sources

- (3FGL J1814.0-1757c and 3FGL J1814.1-1734c) in the region of HESS J1813-178, associated with a y-ray PWN (Acero et al. 2015).
- Comparable spectral indices
 - measured at GeV and TeV (Araya 2018).
- The Fermi-LAT and H.E.S.S. **data can be**

described by a single source model

TS greater for the disc morphology

- than for the two point sources, criterion
- applied to distinguish between an
- extended source and point sources (The
- Fermi LAT Collaboration et al. 2017).

(H.E.S.S. Collaboration et al. 2024). https://arxiv.org/abs/2403.16802

Spatial clustering

- A point is a core if the circle around it contains at least a certain number of points.
- The maximum distance between two samples for one to be considered as in the neighborhood of the other (**eps**) is 1.
- The number of samples in a neighborhood for a point to be considered as a core point (**minPts**) is 5.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) creates a circle of epsilon radius around every point and classifies them into **core**, **border** or **noise** points.

Fermi-LAT clusters map

- We set **eps = 0.005 rad** ≈ 0.3 deg and **minPts = 2**.
- Data from the **catalog 4FGL-DR4**, without any cut on significance.
- We kept only **unassociated sources** and the ones classified as **PSR**, **MSP**, **PWN**, **SNR** and **SPP**.
- We found **23 clusters (56 sources)** including at least 1 unidentified source.

H.E.S.S. contours map

- Contours from the **HGPS** (HESS Galactic Plane Survey) map, at 3, 5 and 15 sigma.
- 17 out of 23 clusters are superimposed on H.E.S.S. sources.
- Clusters 1, 12 and 23 are not showed (they are far from any HGPS source).

Cluster candidates

cluster	n	target	classes	potential associations
1	2	4FGL J0616.5+2235	SNR	IC 443
2	3	4FGL J1111.8-6039	\mathbf{PSR}	
3	2	4FGL J1415.3-6110c		Kookaburra (Rabbit)
4	5	4FGL J1417.7-6057	PSR, PWN	Kookaburra (Rabbit), Kookaburra (PWN)
5	2	4FGL J1422.5-6137	\mathbf{PSR}	
6	2	4FGL J1510.1-5750		
7	2	4FGL J1622.7-4934c		
8	2	4FGL J1636.9-4710c		HESS J1634-472
9	2	4FGL J1711.9-4056c		
10	2	4FGL J1739.2-2717		
11	2	4FGL J1747.2-2957	\mathbf{PSR}	
12	2	4FGL J1754.3-4443		
13	5	4FGL J1759.7-2354		HESS J1800-240B
14	2	4FGL J1801.3-2326e	SNR	W 28
15	2	4FGL J1819.4-1102		
16	2	4FGL J1829.4-1500c		
17	4	4FGL J1838.7-0601	\mathbf{PSR}	LHAASO J1839-0545
18	2	4FGL J1847.2-0141		HESS J1848-018
19	3	4FGL J1854.1+0142c		
20	2	4FGL J1855.9 $+0121e$	SNR	
21	2	4FGL J1857.1 $+0056$		
22	2	4FGL J1859.2 $+0046$		
23	2	4FGL J2240.3-5241	MSP	

- We are interested in **TeV** counterparts.
- The last column shows potential associations with sources from **TeVCat** within 0.5 degrees.
- Some cluster members are actually associated with TeV sources in 4FGL-DR4 (e.g., 4FGL J1420.3-6046e with HESS J1420-607 in cluster 4).
- Targets are the sources with the **smallest RA and DEC** values for each cluster.

Analysis of the clusters

- 1. We utilized data from **4FGL-DR4**.
- 2. We extracted observations spanning approximately **14 years** within the energy range
 - of **1 to 300 GeV**, covering a ROI of **20 degrees** centered on the cluster's center.
- 3. We performed data preparation, response calculations and model optimization, using *fermipy* v1.2 (Wood et al. 2017).
- 4. We conducted **cluster spatial and spectral fitting**, by using gammapy v1.2 (Donath et al. 2023).
- 5. We **compared the TS values for each model** to determine which model better

describes the observations.

6. We **compared the SEDs** of the catalog sources with those of the extended source.

Preliminary example with cluster 1

- The star marker indicates an **identified source**, the circle shows the source extension.
- The second fit has 5 degrees of freedom fewer (2 spatial and 3 spectral parameters).
- The **two-sources model is preferred**, with 10 sigma against the cluster model.

Summary and outlook

- **Spatial clustering** using the DBSCAN algorithm and selection of **unidentified point** sources from the catalog 4FGL-DR4.
- Reanalysis to evaluate the **difference in detection significance** between a collection of point sources and a single extended source.
- Comment on TeV/MWL context.
- Look at ROI's in depth (e.g. joint analysis of Fermi-LAT and H.E.S.S. data).

Thank you for listening!

MSc Giovanni Cozzolongo

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics Nikolaus-Fiebiger-Str. 2, Lehrstuhl für Physik 91058 Erlangen, Germany e-mail: giovanni.cozzolongo@fau.de

Back-Up

Spatial model	HESS J1809-193	HESS J1813-178	$\mathbf{D.o.f.}^{a}$
Uniform disc	97.5	162	5
TeV counts map	76.7		2
1 point source	44	65	$4 (2)^b$
2 point sources	60	92	$8 (4)^b$
Disc + point source		180	9

• The TeV emission from **HESS J1813–178** seems to be compact, ~0.036° (H.E.S.S. Collaboration 2024), while the GeV emission from 4FGL J1813.1-1737e is very **extended**, ~0.56° (Xin & Guo 2021).

Credit: Araya 2018.