SLAC ATCO Testing @ GSFC Update 2

12/18/2023

Sam Hull

LEM ATCO

Baseline requirements:

- Low-energy threshold ≤ 20 keV
- Detection efficiency ≥ 95%
- No explicit spatial resolution requirement, but sub-channel resolution is desirable

Simulations shown for Athena cryoAC

 different count rate expected for LEM but same energy depositions

SLAC Prototype ATCO

- 12 TES parallel network W-TES channels
 - Aperture of current testing setup does not allow for all 12 channels to be illuminated
- All testing shown here with SLAC ATCO-2
 - received AI wet etch, so poor AI trace quality and presumably high probably of some broken traces
- Utilizing GSFC-fabbed, high-R shunt chips
 - Design goal = 5 mOhm, actual estimated ~ 8 mOh
 - Only measured R on 10 shunt channels in series, and have observed some variability in this measurement between chips
- Operating at Tb = 53 mK

Testing Configurations

Same chip has now been tested with four different source/masking configurations

- Two different X-ray masks with holes/slots (Run #1 and #3)
 - Masks are 0.5 mm thick Cu, fully blocking low energy X-rays \lesssim 30 keV
- One run with Am-241 alpha source (5.5 MeV alphas + 60 keV gammas) inside cryostat, directly behind detector wafer (Run #2)
 - Alphas fully masked except at two locations
- One run with no mask detector fully uncovered (Run #4)

*alpha mask was not precisely mounted relative to detector, so positions are not exact (+/- \sim 0.5 mm)

Recap from Run #1 results shown at from previous meeting

- Using mask with 4 holes, able to locate 4 distinct regions in rawPH-rawPH plots for lower energy sources, showing good spatial discrimination at even large distances from hole locations
- "banana" type structure seen in PHA-PHA plots from higher energy X-ray sources also indicative of continues, fine spatial discrimination between channels
- Able to detect X-rays as low as 5.9 keV in all working channels, indicating threshold far below 20 keV
- Soft saturation (non-linearity) observed in pulse shapes at all X-ray energies (for incident channels), so "gain curve" appears quite nonlinear

Further results from Run #1 – Energy Resolution

 Individual rawPH spectra have 4 clear peaks, but line shape are not very Gaussian with poor resolution

- Spectral shape and resolution can be improved with standard frequency-domain optimal filtering
- Also calculated energy absorbed by TES using following equation from Ren et al. 2021 (via Irwin and Hilton)
 - Corresponds to E_ETF, so will diverge from true absorbed energy as pulses become more saturated with increasing energy

$$E_{abs} \approx \left(1 - 2\frac{R_{\ell}}{R_{\ell} + R_0}\right) I_b R_{sh} \int \delta I_s(t) dt + R_{\ell} \int \delta I_s^2(t) dt$$

In some cases, resolution can be further improved with matchedfilter integral (MF-Int) estimator: e.g. integrating the pulses only above a certain threshold, and then fitting to a pulse template below it

Further results from Run #1 – Energy Resolution

- MF-Int works best with large signal-to-noise; less effective in situations with poor signal-tonoise (e.g. spatially distant from incident X-ray hit; higher TES operating point/Tc)
 - In best case—channels close to X-ray hit and low R0/Rn—individual channel resolution as good as few hundred eV
 - NEP/baseline resolution as low as ~ 25 eV
- Standard optimal filter is better with smaller signal-to-noise
 - MF-Int tends to be better with summed spectra; hybrid approach would probably be ideal
- Regardless of analysis method, 20 keV threshold requirement easily being met for all channels, even those with low Tc and detecting X-ray signal originating from a spatially distant location

NEP

region	A (eV)	B (eV)	C (eV)	D (eV)
ch				
2	588.8	1322.4	256.3	25.6
3	560.8	707.2	62.8	98.4
5	1120.7	133.0	54.8	697.8
6	1308.3	184.7	307.3	1074.8
7	757.3	74.8	1193.3	2102.0
8	319.2	76.0	992.3	1908.3
9	168.3	695.8	2925.9	2516.7
10	41.3	551.4	1260.7	401.5
11	60.8	661.7	1044.3	116.8
12	266.8	883.1	1162.4	208.6
13	21095.4	13465.0	21423.4	20199.1

ΔE @ 8.1 keV OF

region	A (keV)	B (keV)	C (keV)	D (keV)
$^{\mathrm{ch}}$				
2	1.18	1.62	1.45	0.34
3	1.39	1.27	1.87	1.90
5	1.76	1.60	1.70	1.20
6	1.90	1.79	1.29	1.60
7	1.26	1.56	1.75	2.68
8	1.51	0.92	1.52	2.44
9	1.57	1.64	3.33	2.86
10	0.55	1.22	1.73	1.40
11	1.58	0.99	1.40	1.84
12	1.21	1.10	1.43	1.64
13	5.95	6.43	6.00	6.95
Summed	0.88	0.88	1.01	1.20

$\Delta E @ 8.1 \text{ keV MF-Int}$

region	A (keV)	B (keV)	C (keV)	D (keV)
\mathbf{ch}				
2	4.00	6.37	1.57	0.23
3	3.70	2.31	2.22	2.19
5	6.34	2.21	2.23	2.57
6	4.36	1.98	1.73	3.66
7	2.51	2.14	3.66	5.12
8	1.82	1.40	3.14	4.71
9	2.26	2.29	5.56	4.65
10	0.41	1.82	3.30	1.93
11	2.16	2.13	2.97	2.32
12	1.41	2.40	3.20	1.78
13	22.73	-	21.06	20.88
Summed	0.49	1.08	0.96	0.60

ch = 8, target = Cu, region = B 120-Centroid: 2.6E-07 A rawPH EWHM: 2.7E-08 A 100-Res: 10.53% FWHM @ 8.1 keV: 853 eV 80 -60 -40 -20 -2.2 2.6 2.8 2.4 3.0 3.2 rawPH [A] 1e-7 region = B, ch = 8, target = CuEabs 100 Centroid: 0.53 keV FWHM: 0.099 keV Res: 18.58% MF-Int FWHM @ 8.1 keV: 1505 eV 80 60 40 20 0.4 0.5 0.6 0.7 0.8 0.3 Eabs_MFInt [keV] 20 - 72 10 ch11 ch10 ch9 ch8 68 67 66 66 ch7 64 [mm] 0 68 -1066 -20 - 64 -20 -1010 20

[mm]

Further results from Run #1 – Energy Efficiency

- Can evaluate energy efficiency as Eabs/Eph and plot as function of distance away from incident X-ray
 - Probably not especially accurate due to soft saturation of pulses, particularly at higher energies and smaller dist

• B • • C ch'11 ch10 ch9 C¹D⁷ ch3 ch6 ch2 ch4 -i0 -5 Ò 10 15 20 5 [mm] dist = distance between centroid of a channel and a given hole location

X-ray Mask v1

10

ch12

5 -

-5 ∉h1

-15

-10

[mm]

Aperture
A

Further results from Run #1 – Deadtime

n²/s/MeV

X-rav Mask v1 Mask Holes 20 Aperture 10 -10 -20 -30 -20 -10 ó 10 20 [mm]

- From simulations, expected total background rate (R) on ATCO is ~ 50 cps •
 - Assuming Poisson statistics, fraction of accepted events F : -

 $F = e^{-dt * R}$

- For $F \ge 95\%$, need dt (deadtime) to be $\lesssim 1 \text{ ms}$

- Took ~ 50 cps data with Am-241 source (60 keV) to investigate deadtime at flight-like rates
 - Despite the highest energy pulses having very long tails, we think using a simple (difference) derivative trigger will allow for detection of secondary pulses while the pulse is still far above the baseline
 - Even for largest pulses, deadtime appears to be no more than ~ 0.5 ms with this method

dt ≈ 0.35 ms

Further results from Run #1 – Co-57 source (122 keV)

Used borrowed Co-57 source to attempt to look at 122 keV X-rays

- Vast majority of detected X-rays appear to be Compton scattered to lower energies
- Some faint banana-type structure that could be the 122 keV line very roughly lines up with extrapolated PH based on "gain" fitting
- Average pulses from this region show that derivatives essentially return to baseline within ~ 0.5 ms, supporting previous conclusion that deadtime will satisfy requirement

Run #2 – Alpha Source

- Motivation: investigate deadtime and spatial resolution beyond upper limit of ATCO energy range
- 5.5 MeV alphas masked to 2 locations ch2 and ch8
 - Alpha source is mounted directly behind detector, with no shielding for 60 keV, so very high X-ray background
- Alphas are fully saturated for period of time in all channels, and have very long tails
 - Obviously cannot spatially discriminate between two alpha locations in rawPH, but integrating pulses (Eabs) shows two clear distributions

0.0

-2.5

0.0

2.5

5.0

7.5

Time [ms]

20

10

15

Eabs - ch2

0

25

30

10.0 12.5 15.0 17.5

Alpha mask

Run #2 – Alpha Source

- Results support conclusion that 95% deadtime requirement likely to be satisfied even at 5.5 MeV
 - Hard saturation time typically still less than 1 ms
 - Derivative trigger will still work well on long tails
- Planning to run a simulation to calculate deadtime as a function of primary/secondary energy using measured pulse shapes at multiple different energies as input

Run #3 – X-ray mask V2

- X-ray mask with 8 holes plus a vertical slot and cross shape
 - Pairs of holes with different separations to investigate discrimination ability in different situations (e.g. inter-channel vs across channel)
 - 2 mm and 4 mm hole separations
 - Slot across channels to look for any discontinuities at boundary
 - Cross to investigate differences along x vs y axis
- Resulting rawPH-rawPH plots show 10 distributions with clear separation
 - Manually identified regions with hole locations below by comparing across many such PH-PH plots

Hole/Slot diameter = 0.5 mm

10

Α

B

C

D

G

[____] Aperture

15

20

Run #3 – X-ray mask V2

- Even most closely separated holes (2 mm) can easily be split into regions in rawPH vs rawPH plots
- Single neighboring channel (e.g. ch 2 lower right) can discriminate between multiple distributions on its own

Run #3 – X-ray mask V2

X-ray Mask v2

 A • B

• C

• D

• E

• F

20

ch9

ch10

10

5

0

ch12

Run #3 – Spatial Resolution

- First attempt to evaluate spatial resolution by fitting a 2d function to the distribution of signal over (x, y) position [e.g. Eabs(x, y)]
 - (x, y) channel position taken from geometrical centroid of each channel
 - Using 2D Gaussian function to start though there is probably a better choice
- Only 12 channels to work with (and some of them are not working...) plus different TES operating points skewing the signal sizes

Run #3 – Spatial Resolution

- For most cases even this simple fitting method is somewhat effective; can locate the incident location to within a few mm and usually get correct channel
 - A few regions where not able to get many successful fits
 - Gain difference between channels (due to different operating points) likely skewing fit results

Run #4 – No Mask

- Only really started taking data last week, so not much analysis completed yet
- Results do show expected "banana" type plots and other indicators of spatial discrimination
- Simple 2D Gaussian fitting does show most events are restricted to the aperture region, but with interesting structure
 - Using a better model and/or machine learning assistance will probably improve results

Other Oddities

- Lost one previously working channel (ch8) after the first run
 - Wire bonding issue during thermal cycling? Didn't see visible evidence of this, but didn't do any physical testing
- Significant changes in measured IVs between runs
 - Consistent Rn reduction over time across all channels
 - Also seeing Tc shifts that tend to go lower, but this is less consistent between channels
 - Also some differences in measured G values, but error on this measurement is high so hard to accurately correlate with these shifts

