
Pix2PGP
ASIC Implementation Architecture

Christos Bakalis
TID - TID-ID-ECS

15 May 2024

2

Outline
 Introduction

 Current Sparisifed Readout Analog/Digital Architecture

 Next Step – Pix2PGP – System Overview

 Current Architecture of ASIC Data Extraction

 Proposed ASIC Architecture - Pix2PGP

● Column Manager

● Arbiter and Column Supervisor

● Gearbox and Data Structure Considerations

 Summary

 Bonus at Backup: Error Handling and Overhead/Bandwidth Calculations

3

Introduction

Currently, the data handling for Sparsified Readout ASICs
(SparkPix-T and -S) support limited bandwidth

4

Current Sparsified Readout Digital/Analog Architecture

SRO is
driven by
Front-End
FPGA.

SRO is
essentially
the main
trigger that
initiates the
readout of
pixels

Each pixel
column
accepts the
SRO in the
form of a
token (tko). If
a pixel has
data, it
requests to
be digitized
(req). Data
are then
converted
and buffered

5

Example Waveforms

One pixel of column[9] has data

No Data on column[11]

Overoccupancy Error → receive new SRO before tok_fb goes high
 OR
 receive new SRO before last FIFOwrEn is issued

The ADC conversion process induces a latency → wrEn
for the data word (ADC word + addr is issued ‘late’)

6

Pix2PGP – System Overview

 Need to increase the bandwidth to comply with higher trigger rates of
LCLS-II

 First steps towards that include the deployment of a new ASIC
serializer in the ASIC, driven by the Pgp4TxLite surf module.
 Pgp4TxLite is a 64B/66B encoder that implements the PGP4 Protocol

with minimal gate utilization → ideal for ASICs
 The functionality of the new ASIC serializer has been demonstrated

successfully through the SparkPix-IO project
 Pgp4TxLite not yet tested on the ASIC level (to-be-tested soon on the

ePixUHR project)

https://github.com/slaclab/surf/blob/master/protocols/pgp/pgp4/core/rtl/Pgp4TxLiteWrapper.vhd
https://confluence.slac.stanford.edu/pages/viewpage.action?pageId=368343506

7

System Overview – Pix2PGP and PGP4TxLite

8

Proposed Architecture – Pix2PGP Top-Level

9

Column Manager
 Trigger Counter increments

for each received token/SRO

 FSM waits for request to
convert (req). If one request is
received, DataLenCnt += 1. If
two requests, DataLenCnt
+=2 etc.

 The converted ADC data +
pixAddr are written straight to
the Data FIFO

 Upon reception of tok_fb (i.e.
when analog is done scanning
pixels for hits), the FSM writes
the the associated status
word to the Status FIFO

 If overoccupancy → the FSM
raises the OverOcc bit and
writes into the Status FIFO

10

Arbiter and Supervisor
 The Supervisory process monitors the

StatusFifoEmpty signal of all status
FIFOs

 If all Status FIFOs have a word, that
word (xN) is read and evaluated on a
global scale

● If some FIFOs are full, an error data
frame header is TX’d (same for
other errors)

● If no errors but also no Column has
data, a data Frame header is
forwarded to the Gearbox wrapper

● If some (or all) Columns have data,
the Arbiter round-robins and
forwards the data to the Gearbox
wrapper, alongside the data Frame
header

11

Data Frame Structure (for SparkPix-S)
 The Pix2Pgp data frames always consist of one 40-bit header

 8-bit flag Field (mostly Error bits)

 24-bit Column Bitmask Field (if a bit high → corresponding column has data)

 8-bit Trigger ID (from the Column Status FIFO – should be the same for all
Columns)

12

Data Frame Structure (for SparkPix-S)

 If no hits on any column, only the header is TX’d. Same if there is an error (except for
OverOcc error, where data are still read-out)

 If Error, the receiver FPGA will register that and probably issue a reset and notify
the software

 If data are extracted for a given event/trigger, then each Column with hits will have
one 10-bit dataLen word (from its Status FIFO) and the amount of 20-bit hits it
recorded.

 E.g.: this event has 2 hits from two different cols (cols 0 and 5)
pgp data frame header | col5_dataLen=1 | col5_hit0 | col0_dataLen=1 | col0_hit0

 E.g. 2: this event has 3 hits from one column (col 2)
pgp data frame header | col2_dataLen=3 | col2_hit0 | col2_hit1 | col2_hit2

See backup for expected data/frame
length calculations

13

Frame size and Gearbox considerations
 Since PGP4Tx works with 64-bit words, it is convenient if its input words are 64-bit wide

 Each PGP data frame for SparkPix-S consists of:

 One 40-bit header (100% certain)

 Max 24x10-bit dataLen words (if data in some or all columns)

 Max 24x672x20-bit hit words (if data in some or all columns)

 So since all of these elements are multiples of 10 bits, this Gearbox configuration was chosen:

 10-bit → 320-bit → 64-bit*

 The first gearbox will send one 320-bit word to the second gearbox, per 32x10-bit words as
generated by the Arbiter.

 Then the second gearbox will write 5x64-bit words into an AXI-Stream FIFO → PGP4Tx
Input

*Seems odd? It will become more clear
why on the next slides

14

Frame size and Gearbox considerations
This Gearbox configuration will allow to “flush” it very easily after receiving the last
trigger of a given sequence

 The gearbox will probably have some data remnants in its shift-register if data are not
being pushed out of the columns anymore

● i.e. if no triggers are issued anymore, there should be some data associated with the
last trigger left in the 10:320 gearbox shift-register

 By querying the gearbox data pointer position, the Pix2PGP logic can insert dummy
timeout headers (recognized by the receiver from its associated flag) and push the last
valid data out of the pipeline. This is the main reason why the 10:320:64 gearbox
configuration was chosen → it allows for easy padding in that corner case

 Finally, we can configure via SACI on how large we want the PGP frames to be. The
default can be equal to one burst of five 64-bit words; but we can increase that
accordingly. It all depends on how large an event we expect → this will decrease the
PGP protocol overhead*

*See backup for expected data/frame
length calculations

15

Frame size and Gearbox considerations
Therefore, the PGP frame delimiters will not be the same as the event
delimiters

 Due to the frame structure though, the FPGA receiver will be able to
process the inbound PGP frames from the ASIC, and separate the events

● It essentially knows how long the event frame within one or multiple PGP
data frames will be and will break down the events from within the PGP
frames

● It will then operate as it operates now, where it sends ONE PGP4 frame to
the back-end software per ONE event. This will also allow for aligning the
data with the timing information from the LCLS2 Timing Receiver

16

Conclusion
 The proposed architecture allows for reading-out columns that will be operating independently

 The concept of writing the length of the data alongside the data themselves into FIFOs allows for fast
and independent operation between Analog and Digital

 The presence of the trigger counter and the overall frame structure allows for easy event
reconstruction by the FPGA receiver

 The proposed gearbox structure facilitates the driving of the PGP interface, handling of overall PGP
frame size and resolution of corner-cases that arise when no more triggers are being received by the
ASIC

 Each column handles a possible overoccupancy situation independently

 A standardized frame is TX’d via PGP for each error case, providing system-level updates

● The FPGA acts accordingly by resetting

 Tried to develop this as generic as possible. Most of the logic will be parametrized, in order to port it
easily into more ASICs in the future. The only thing that will change will be the frame size, but the
readout concept will stay the same

17

Status
 Most logic has been designed and can be analyzed with GHDL

 Some testbenches are available. Working on making more and putting it all together

https://github.com/slaclab/pix2pgp

https://github.com/slaclab/pix2pgp

18

Backup

19

Error Handling on the FPGA Receiver – Error Flags
 Over-Occupancy (flag controlled by the Column Manager)

 Occurs if an SRO is received by the Column Manager/Analog during processing of a
previous event (i.e. before the token-feedback is issued after the SRO).

 The ASIC still TX’s the data alongside the OverOcc flag in the header

 The FPGA receiver will receive the data, and also register the OverOcc flag and forward
both to the receiver software. TBD: Reset the ASIC? Not Reset?

 Trigger Misalignment (flag controlled by the Column Supervisor)

 Occurs if a Column Manager has a different trigger value with respect to the rest during
the same event. The FPGA receiver will discard the received data and reset the ASIC. It
will also report the error to the receiver software

 Status/Data FIFO Full (flag controlled by the Column Supervisor)

 The FPGA receiver will reset the ASIC and report the error to the receiver software

20

Error Handling on the FPGA Receiver – Data Corruption
 Should not be too big of an issue since we are talking about X-Ray detectors here. In any case, if any

bitflips occur, the severity of the issue will depend on where within the frame the bitflip is.

 If the bitflip occurs within the data themselves (i.e. in a column address or ADC value):

● Small impact

 If the bitflip occurs on a trigger ID, it might cause misalignment between data from different serializers
within the same ASIC (because the FPGA receiver aligns the data from different serializers based on
their trigger ID), or between multiple ASICs

● Significant impact. Need to reset the full chain

 If the bitflip occurs within the colBitmask of the header or the dataLen inside the data:

● Significant impact. This will ruin the data handling on the receiver side, as it will mess up with the
limits of the frame (the FPGA receiver will erroneously think that the event is smaller or larger)

● The receiver software can have safeguards on this: Event size too big? Likely bitflip. OR, did we just
receive two hits for one pixel for one event? Likely bitflip → Signal a full chain reset

21

Overhead and Bandwidth for Occupancy of 0.5% at 1MHz
3.36 hits per column (each hit word = 20 bits)

● 3.36 x 24 → ~80 hits per serializer. 80x20 ~=1600 bits of pure data

● 24x10 → 240 bits of dataLen (if all columns have at least one hit)

● 1x40 → 40 bits for the header

 1600 (effective user bits) + 240 (overhead) + 40 (overhead) = 1880 bits per trigger

 Therefore, Pix2PGP data frame overhead is ~15%

 If we configure the logic between Gearbox and PGP for a frame size of 1920 bits → One 30x64-bit PGP frame will
contain roughly one event (i.e. 6x(5x64)-bit gearbox bursts)

 PGP adds one SOF (64 bits) and one EOF (64 bits) to each frame it TX’s (CRC is in the EOF)

 PGP adds 2 control bits per 64-bit word → a PGP frame of 30x64-bit words will have an overhead of 2x30 + 64+2 +
64+2 → 192 bits overhead from PGP4 (1% overhead for the aforementioned data frame size)

● 1880 (Pix2PGP frame) + 192 (PGP4 Overhead) ~= 2100 bits/s → 2.1 Gbps (at 1MHz)

Well below the 5 Gbps serializer
bandwidth

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

