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Image Reconstruction for GLAST /LAT
Data Using EMC2!
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TExpectation through Markov Chain Monte Carlo
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The Gamma-Ray Sky as (may be) seen by GLASTI

55 day simulation from GLAST Data Challenge II
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Find the SNR in These Data! I

GALPROP diffuse + RX J1713.7—3946, 1 year LAT sim, 10° x 10° field
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LAT PSF and Counts Spectra'
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Energy-dependent Blurring in Poisson Limit'

GALPROP + 3EG sources in Cygnus Region

\_
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Richardson-Lucy: Expectation-Maximization for Image Reconstruction

Consider a model image A = {\;}, where ); is the model count in pixel i. For image reconstruction,
we formulate the problem in terms of “missing data”,

z; Poisson()\;) = e A% /x! (1)

Here X = {x;} are the source counts detected in each pixel for an ideal instrument, i.e., without

effects from PSF, pile-up, etc..
In the case of PSF blurring, A = A;;, the observed data, Y = {y;}, are given by

Y; L Poisson(z Aii\i) (2)

We could write the log-likelihood in terms of Y,

log L(A]Y) = Z [ ZAz‘j)\i +y; log <Z Aij)\i>

J

+ terms independent of A, (3)

and optimize wrt {\;}, but it is easier to write the likelihood in terms of z; and apply EM:

log L(AIX) = (=i + 2;log \;) (4)

1
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EM Implementation I

E-Step: Given a A = A®, at iteration ¢, replace X in the log-likelihood by its conditional

expectation:

v — BV, AY) (5)
where F(---) is the average of x; weighted by the conditional probability P(z;|Y, A®)). This
probability can also include priors on A.

M-Step: Given X, update A by maximizing the resulting log-likelihood:
OL(A|X)
O\
=AY = Bay|Y, AW) (7)

—1+4 E(z;|Y,AD)/x; =0 (6)

Richardson (1972) and Lucy (1974) use Bayes’s Theorem to compute E(z;|Y, A®):

)\gt+1) _ )\Et) Aiky—k (8)
zk: Zj Ajkr)‘lg't)
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RL Applied to Chandra Data of NGC 6240'

A) Chandra data, B) EMC2 reconstruction, C) RL at 20 iterations, D) RL at 100 iterations.
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Motivations for a Multiscale Poisson Framework'

e RL tends to amplify Poisson fluctuations, especially for low count data. This can be ame-
liorated by including regularization or smoothing in the reconstruction. Often this takes the
form of a prior distribution.

e Most image data have spatial structure on a variety of different scales, with different amounts
of intrinsic smoothness depending on the underlying physics. This information can also be

folded in to a prior distribution.

e Wavelet-based regularization methods capture the multiscale aspects of the data, but are

better-suited to Gaussian problems.

e Nowak & Kolaczyk (NK, 2000) have developed a multiscale framework that is inspired by
wavelet methods, but is suited to Poisson statistics. Furthermore, it is amenable to an EM
algorithm wherein the maximization step can be expressed as a closed form solution and so is

computationally efficient.
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Low Resolution

z. & Poisson(\)

A2 Gamma{(ao, 8)}

z. 2 Multinomial(p;)

x,.

p1 g Dirichlet{ (o1, 1, 1, 1)}

Prior shrinks toward Smooth images

T | T 2 Multinomial(p2;)

P2 2 Dirichlet{ (a2, o2, a2, a2) }

x1. 9.
xIs3. I4.
T11 T12 T21 22
13 T14 23 T24
r31 32 41 42
33 T34 43 T44

High Resolution

Multiscale Representation and Prior Distributions'
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Splitting Factors (in 1D) I

Splitting factors are introduced via a prior distribution that controls the amount of smoothing for
each level of resolution. These factors determine the assignment of model counts in going from a
coarser level to the next level of refinement. In 1D, the effect of these factors can be depicted as

scale 0 (coarse)

scale 1

2 scale 2 (fine)

XZ.U 7\’,2.0 XZ,I }L’Z.J XZ.Z }\'

The pj;;s are drawn from a Beta distribution,

pim L % (1 = p)% 71/ B(ay, ;) 9)

where j indicates the resolution level, m the pixel index at that level, and B(«, 3) is the beta

function. If we take a;; = (3;, then the maximum a posteriori estimate (M-step) of the splits are

Tjtr1,om T+ aj —1
Tjm+2(a; — 1)

Pjm = (10)

The «; determine the amount of smoothing: p;,, — 1/2 for a; — o00; and pj,, = 2™ for
J7m
Q= 1.
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RL and NK Applied to LAT Simulations'

Simulated counts map Richardson-Lucy Multiscale Poisson
(Nowak & Kolaczyk 2000)

“Cycle spinning” can be applied to remove the blocky structures from the NK reconstruction.
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EMC2 (Expectation through Markov Chain Monte Carlo) I

Esch et al. 2004, ApJ, 610, 1213; Connors & van Dyk 2006, SCMA, 2006

e Combines EM algorithm with a Markov Chain to provide information on the posterior distri-

bution of model pixel intensities = feature significance and uncertainties.
e “Hyper-prior” distribution for a;s

e Alternatively, one can use multiwavelength data and/or physical models to set « ;s to appro-

priate values.
e Allows for a background or null model to be specified.

— Extra computational cost because of MCMC steps.
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EMC2 Applied to Chandra Data'

A) Chandra data, B) EMC2 reconstruction, C) 1-sigma significance map, D) 3-sigma map.
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Including a Null Model: EGRET Analysis'

GALPROP model Simulation
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Reconstruction with a Null Model.

GALPROP model Simulation with source
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Assessing the Significance of an Extra Component'

Bright Discontinuous Unknown Null (.) vs Bright Unknown (+)
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Extensions for GLAST/LAT Data'

e Use radio survey data of gas distributions and GALPROP predictions to inform choice of

smoothing parameters o;s.

e Use energy-dependent PSF information through joint prior distributions inferred from recon-

structions in different energy bands.

e HEALPix representation for all-sky reconstructions:




