ARCHON

A HIGH PERFORMANCE MODULAR CCD CONTROLLER

Revision 1.0.1166 — February 23, 2021

Copyright © 2021 Semiconductor Technology Associates, Inc.
1241 Puerta Del Sol, San Clemente, CA 92673
(949) 481-1595 — http://www.sta-inc.net — customerservice@sta-inc.net

mailto:customerservice@sta-inc.net

Table of Contents

Ta1ageTe [V AT] o HUUT PP P PP URTOPPTTOUPRI 9
Archon FEAtUINE SUMMAIY ...uuiiiiiiieecciiee ettt ettt e e et e e e ette e e e s atee e e s bbeeessssbaeesaasbeeeeasteeesennsaeeeensseeeeennsenas 9
o N (ol] o =] &= 4 o] o FS PPNt 10
ClOCK DIIVEI IMOTUIE ..ttt ettt sttt et b e s bt st e sae e et e esbeesbeesnne e 11
DC BiaS IMOTUIES ..ottt ettt ettt et s bt e st e st e e s b e s bt e e sabeesabeeebeeesabeeesaseesabeesneeesaneeesnns 11
FAN O Y Yo [PP 12
FAN Y1V o o [= PP 12
High Speed CIOCK IMOTUIEcoiiiieee ettt e e e et e e e et e e e e stte e e s ebteeeesntaeesestanessanes 13
LVDS ClIOCK IMOTUIE ...ttt sttt et ettt e be e s at e st st e bt e b e beesbeesmeesaeeennean 13
HEALEN IMOTUIE ...ttt ettt et et eshe e s at e sab e e bt et e e beenbe e bt e saeesateentean 13
HEATEIX IMOTUIE ..ottt et ettt et e s bt e st e st e e s sabe e sabeeesabeesabeesabeeesabeeenanes 14
ATCRON CRASSIS 1euutiiiiiieitie ettt ee ettt e ettt sb e st e ht e e s bt e e s abeesabee s bbeesabe e e abeesabeesabbeesabeesabeeeanseesabaeesareens 14
2ol o] =TT 41 2P 15
COMMUNICATION ..ceiiittiii ittt ettt e e s b e e s b e e e s s b e e e s s mbe e e sssbeeessnnrenas 15
o E e LV YT ==Y USRS 15
Synchronization (Backplane Rev. D and €arlier)c.eccueecceeiiiiecee et tee e s tee e aae e s vae e 18
Synchronization (Backplane Rev. E and ater)cccuioiiiicciiiiceecee ettt et e ire e s 18
POWET .t e a e 19
IMIOTUIES ..ttt ettt e b e s bt e sh e e sat e e at e et e e beesheesabesabe et e e bt eabeenbeesmeesnteenteentean 20
ADC MOTUIE ...ttt ettt b e s bt e s bt e s ae e e at e e beeebeesheesateeabeeabe e beenbeesaeeeateentean 22
ADM IMOGUIB ..ttt h e a ettt et e bt e bt e s bt e sae e e ab e e beesbeesheesateeabeeabe e beeabeesaeeeateeneean 25
DIIVEE IMOQUIE ...ttt et et ettt st et e e b s ae e st e et e b e e b e e sanesanesaneeneenes 27
DIIVEIX IMOTUIE ..ttt et et ettt st et e b s e e st e et e e b e e s b e e sseesanesaneeneens 28
LVBIaS/LVXBIAS IMOAUIE ...eevviieieeeiie ettt ettt e ettt e e ettt e s st et e s s ab e e e s s eabeeessabeeesssbaeesssasaeesssnbaeesssnraeas 29
HVBIAS/HVXBIAS IMOAUIE....veeeeee ettt e e e ettt et e s e e s e et e e eeesssasssareeeeeeesssasassseseeeessssasnrrreeeeees 31
XVBIAS IMOTUIE ...ttt e s e st e e bt e s re e e s at e e sabe e e be e e sabeeesnseesnneesaneeesareeennnes 33
HS (High SPEEd) MOTUIEeeeieeeeeee ettt e e et e e e et e e e e e ab e e e e e abeeeseabeeaeenntaeaeenrenas 34
LVDS MOAUIE ...ttt sttt ettt ettt st et b e s b e e s ae e st e et e e b e e sbeesanesanesneeneenes 36
HEALEN IMOTUIE ...ttt st sttt b e st st e et e et e s b e e sseesanesaneeneens 37
HEALEIX IMOTUIE ...ttt sttt et et e bt s it st e et e e b e e sbeesaeesanesaneeneens 39

N =] 0l e 1T V= R 41

o)V L= G 0o T o W] oY o) A o] o HPS PPNt 44

COMMUNICATION ..cciiitiiii ittt et e st e e s a et e s sra e e e s sba e e e s sbaseessnbaeessanes 45
SY STEM ettt ettt ettt st e s bt e s ab e st e e e bt e e e a b et e bt e e ehr e e e b et e sabee e bee e hte e e beeeanbeeebeeeneeesreeenns 46
STATUS ettt ettt et e s et e bt e e s at e e s bt e e s ub e e sab e e s b eeesabeeeabe e e ea b e e s beeesabee e b e e e be e e e beeeanbeeebeeeneeesbeeenns 47
TIMIER <ttt ettt ettt e st e e bt e e s ab e e s bt e e s abe e s bt e e st e e s be e e ea bt e eabeeene e e s be e e eabeeebeeeneeesneeenans 49
FRAIMIE ...ttt ettt s bt e s st bt s b bt e s e e e s bt e e s b e e s ba e e s b e e e e sa e e s b e e s are e e s neeennn s 50
FETCHLOG ..ottt sttt sttt ettt s e e e st e s b e e s be e e sab e e s smneesaneesmenesaneeennes 50
L0 1001 o TP P PP OPRP 50
VERIFYMODXXYYYYZZZZ ...ccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt et ettt et et et et et et e eeeeeeeeeeeeeeseeeeeseeeseeeeaeeeeeeeaeaeeeaeeeseeeesaeeees 50
ERASEIMODXX «.uveeeuuteesuteeesiteenteesauteesseesseeesuseesasteessseesaseeesasaesaseesssseesnsasessseessseesssseesasesessseesaseesnseeesaseeennnes 50
FLASHMODXXYYYYZZZ...ZZZ c.ceevveeeeeeeeeieeeeieeeeeeeteeeteteteteteeeteeeteeetetetetetetetetetetetetetetetettteteteteeeeeeterererereeeeereeeee 50
ERASEXXXXXXXXYYYYYYYY teeeeeteeeereereneeeeeeereeeeeeeeeeeeeeeeeteeeeeteeeeeeetetereeeteeetettetettetet. 50
FLASHXXXXYYY .c.W VY tettetteeettteteeeeeeeeeeeeeeeeereteeereeeeeeeeeeeeeeeeeeeeeeeeetetereeeteeeeereeeteteeeeeterreeerrereeeererrerrerrrrerrererrn 51
VERIFYXXXXYYYY eeeieiiiiiiiiiiieiiieieeeeeeeeeeeeee ettt ettt ettt et et eeeeeeeeeeeeeeeee e et e e e e et et aeeeaeesereeeeeraeaeeeeeareeaeaeeeeeeeeeeeeeeeesenenes 51
REBOOT ...ttt ettt sttt e sttt et e st e sttt e s bt e s bt e e s abeesabeeesabeesabeeenbeesabeeesabeesabbeeanbeesabeeenabeesabeeenteesabeeennnes 51
WARMBOOT ...ttt ettt ettt e ete e ettt e sat e e sttt e sabeesabeesbbeesubeesabeeesaseesabaeesabeesabaessbeesabeeesnbeesasaesasbaesareennns 51
FETCHXXXXXXXXYYYYYYYY tetteeteeeereereneeeeeeereeeeeeeeeeeeeeeeeteeeeereeeeeeeeeteeeeeteeetemtetetetttetemeeermrn 51
WECONFIGXXXXEEE. . B e s e s 51
REONFIGXXXX 1ttt rureeeeranreeeerireeessateeeeseseeeesereeeessreeeesabaeeesemaeeesanbeeeesambaeeesanneneesananeesareeeessneneesanneneessanen 51
CLEARCONFIG ettt sab e b e s aa e e sbe e s saa s e s b e e sbaeesabaesans 51
APPLYALL. .ottt e a e a e sba e sabee s 51
POWERONoiiiiiiiti ittt ab e b e s ab e e sabe e s saa e e sabe e snaeesanaeenns 51
POWEROFF ...ttt sttt s e st s e s bt e s st e s bt e m e e e sab e e e ame e e sab e e s neeesabeeeamneesareesanenesaneeennes 51
LOADTIMING ...ttt ittt sttt e s e st s e e s b et e s st e e s b et e me e e sabeeeameeesab e e s neeesabeeeanneesmreesneeesaneeennes 51
LOADPARAIMS ...ttt ettt sttt e st ettt s e s bt e s a et e s b et e me e e s b e e e ase e e sabeesmeeesabeeeamneesareesaneeesaneeennnes 52
LOADPARAIM P ittt bbbt s ba e ab e b e s ba e e sabe e s saa e e sab e e sba e e saba e e an s 52
PREPPARAM Pttt ettt s bb e s b e s ba e e sab e e e saae e sabe e snaeesaneeenns 52
FASTLOADPARAM P .ttt sttt ettt st sttt e bt esbe e sae e st st e e bt e b e b e e nmeesmeesmeeenneen 52
FASTPREPPARAIM P 0 ..iiiiieiiee ettt sttt st e sttt e st e e st e st e et e s b e e sab e e sabeeemeeesaneeesmneesareesaneeesaneesnnees 52
RESETTIMING ...ttt ettt ettt e st s et s e e st e e st e e st e e e st e e s abeeesmeeesabeeeneeesabeeeamneesareesaneeesaneeennes 52
HOLDTIMINGce ettt itie ettt ettt ettt et e et s e e st e e sa e e s be e e st e e sabeeeameeesabeeeneeesabeeeamseesareesaneeesaneeennes 52

RELEASETIMING ..ottt s st sba s saa e 52

LYo o 0 S 52

AAPPLYDIOXX ...utteuteteettetesteeutestesttete s bt eat e bt sue et e sbeeatesbesbeeateebeeht et e ehe e st e bt eat et e ehe et e beehe e beeheeat e bt eateteeheeanas 53
LA o o B O Y 11 =1\ PPNt 53
LAY o o I 4 61 D K PPNt 53
FLASHACTIVECONFIGccoiiiiiiiiiiiiiiieiiieieieteteeeeetete ettt teteeete e teteteteteteteeeteteeeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeaeeeeeeseeaeeenees 53
ERASESTOREDCONFIG.cuttiutetiiutetesteeiteste st te et e ettt et s bt eatesbesbeeabesheest e besae et e s bt easenbesbeentesbeeneenbesaeenes 53
AP PLYNET <.ttt ettt ettt ettt b et h et b e e a e et e s bt et e e bt eh e et e e bt e a e e bt e a s et e ehe et e bt eh e e beeheeae e bt sat e teeaeeatas 53
(00T] = {U T 14 (oo TSP PSPRNt 54
PPNt 54
O] PP PPPPPPPPPTPPPPPRt 54
LINECOUNT L.ceiiiiiiittiieiteeteteteteee ettt ettt et teeeee ettt st ee et eeeeae e et et et et et et e s et et et et et e s e s e s e e e e e e e e e aeaeeeseaeeeeeeaeeaesesseseeaaaneees 54
LINES ettt ettt e e e ettt e e e e e e et e et e e e e e e e e b e —eeeee e e e e e beaeeeee e e e e e e nnerteeeeeeee e nrreeeeeeeeeeannrnee 55
1 o PP PP OO U PP UPPPPOPORt 55
ST AT E S e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaeaeanns 55
STATEN/NAME......teiitie ettt ettt et e et e e te e s te e s te e s tbeetbeebeesbeesbeasssesssesaseeabeebaesbaesssessseesseeseesteesssesssenns 55
STATEN/CONTROL ..uviiitiiiie et ettt e ette s teete et esteesteesteeetbeeabeesteestsesasesasesabeenbeebaesbaesssessseesseeseesteesssesssanns 55
STATEN/MODI ..teiteiitieettecie ettt st e s te s e e et e e s te e ste e srteeste e te e teesseesseesnteanteanseessaesseesssessseenseesessseesneenns 55
PARAIMETERS ...ttt ettt et e ettt e e e e e e e bbbttt e e e e e e e aa bbbt e e e e e e e e s nnneeeeeeaeeeeaannseneeeeesesesannenes 55
N AN AV = I 3 o T P PPPPPPPPTPRPPIN 55
CONSTANTS ...ttt sttt ettt ettt ettt e et e s bt e ab e s bt ehe e bt e bt e st e s bt s ae et e sbeem b e s bt e st e bt sue et e sbeeabenbeeseenbesaeenteaneennen 55
CONSTANTN Lttt sttt ettt ettt ettt sat et e s bt e b e s bt eht et e e bt e st e s bt s ae et e sh e et e s bt e st e bt sae et e sbeeabenbeeneenbesaeenteaneeanen 55
SHP L ..ttt b ettt h et bt h e bt h et bt et e bt eh e e b e ekt e a e e bt ea e et e ehe et e nbeeabe bt saeenteabeeanen 55
) o | PP U PPT PO UPPPPPPPTN 55
) | TP PP PO UPPPPPPPTTTN 55
) | PP TSP PO UPPPPPPPTPN 55
BIGBUF ...ttt ettt ettt ettt b e s bt et b e st et s bt et e s b e e a b ekt sb e e a b e s bt e st e bt e bt et e bt e ab et e she e b e sheent e besaeenee 55
RAWENABLE ...ttt ettt ettt sttt h ettt he et s bt e at et e sbeea b e sbeebte bt s bt ent e bt eabenbesbeembesbeeneenbesaeenes 56
RAWSEL ...ttt ettt ettt ettt ettt sh et bt et e bt s bt et e s bt e a b ekt sb e e ab e sh e e st e bt e bt ea b e beeab et e she et e sheent e benaeenee 56
RAWSTARTLINE ...ttt ettt e e e e e ettt et e e e e e e s s bbbttt e e e e e e s annebeeeeeeeessannseneeeeeeasasannnnes 56
RAWENDLINE ...ttt ettt ettt ettt ettt e et ee e ettt et ettt e te s e e e te e e e e et e et et e e e ee e e e e eeeeeeeeeeeeeeeeeeeeenanenenes 56
RAWSTARTPIXEL ...cetieiieieitee ettt ettt et ettt e e e e e e ettt e e e e e e s aaabbbee e e e e e e e s annereeeeeeaeesannsebeeeaeeasasannnnnes 56

RAWSAMPLES ..ot 56

SAMPLEMODE ..ottt 56

PIXELCOUNT ..ttt ettt ittt st et et e s a e e s ba e e e s sba e e e s sba e e e s sabaeeessnnaeessanes 56
FRAIMEIMODE ..ottt e et e e e e s s s s s e bt e e e e s s s s s b e ae e e e e s s s e snnnanes 56
LINESCAN Lttt e e s s a et e e e e s s e s b a et e e e e s s s s b e beeesesssesnnnnnes 56
TAPLINES .t e e st e e e st e e e s e e rraee 56
TAPLINEN ottt st e e s a st e s s r e e e s sanee 56
TRIGOUTRORCEciiiiitiii ittt st sra e e s a e e e s sba e e e s sba e e e s sbbeeessnaaeessanes 56
TRIGOUTLEVEL ...ttt sttt rba e s sba e e s sna e e e s sra e e e s sna e e e s sanes 56
TRIGOUTINVERT .ttt sab e 57
TRIGOUTPOWER ...oiiiitiiii ittt bbb sab e e ab e e e s sab s e e sanes 57
TRIGINENABLE......ceeieiiieittt ettt e e sttt e e e s s s s e be e e e e s e s s s nnbaseeeeesesesannnnnes 57
TRIGININVERT ...ttt ettt e e s et e e s s be e e e s sne e e e s sneeeessneneessanee 57
EXTCLOCK . ettt st et e e st e e s b et e e s e b et e e s sbe e e e s ebaeeessabaeeessanreeessanee 57
FANDISABLE ...ttt et e e e s b et e e e e s s e s e bttt e e e e s s s b e be e e e e e e s e sannanee 57
APPLYALL. ..ttt e e e s e e e e e s e e e e e e e ea e e e e s 57
POWERON ...ttt ettt e et e e e e s e s b et e e e e e s e s b e bt et e e s e s s s ssbabeeesesesesannnnnes 57
IMIODIMI/LABELI. ...ttt ettt ettt ettt ettt ettt et at et e s bt e et e tesh e e atesbeeate bt eaeent e beeatebesaeentesbeentenbesaeenee 57
MODM/FASTSLEWRATE ...t teteetiete st ete it sttt e et ettt st e e st e et estesbeenbesbeentebesseeneesseeaeestesaeensesteentensesaeenes 58
MODM/SLOWSLEWRATE ...c..titteuietestteteste et te sttt e e este st eeeste et estesbeebesbeentebesaeeneesseeaeessesatesesaeensensesaeenes 58
IMIODIM/ENABLE ...ttt sttt sttt ettt b s bt st b et ettt e b e b sb e sb et et et et e st eaeeneebenbenen 58
IMIODIM/SOURCEI ...ttt sttt ettt sttt ettt b e bbb et et e st e bt e bt sb e sb et et et enteneeaeenesbenbeben 58
IMODM/CLAMPHIGH ...ttt sttt st st sttt b ek besa b et et et e st eaeenesbenbennen 58
IMODM/CLAMPLOW ...ttt sttt ettt et e s bt et e bt e at et e sbe e tesbeestenbesbeentebesaeeneesseeatentesaeensesteentensesaeenes 58
IMODIM/CLAMPL. ...ttt ettt ettt ettt et et e ae et e s a e ea e e sbesh e et e sbeent e beeaeentesbeeatentesaeentesbeeneenseeneenes 58
IMIODIM/CLAMPZ ...ttt sttt et ettt et e ae et e s h e et e sbeeh e et e sbeemt e beeaeenteabeententesaeentesteentansesneenes 58
IMODIM/CLAMPS ...ttt sttt ettt a bt bt s h b et et et eh e e bt e be s bt sb et et et enteneeaeeneebenbenen 58
IMODIM/CLAMPA ...ttt ettt sttt b e bt st e b et et et e bt e bt e b e s b e sb et et et et eneeaeeneebenbenben 59
MODM/PREAMPGAIN ...ttt ettt sttt st sttt ettt be bt st st e st et et e st e bt e b e sb e st et et et e st eneeaeenesbesbesen 59
MODM/LVLC _LABELI...cutitteteteeeieie st eee st eete et ettt et e e st e et estesstentesaeentesesaeentesseeneensesneensesseentensesneenes 59
IMODM/LVHC _LABELI ..ctttteiteteetteie sttt ettt ettt et e e st e e e stesatenbesaeent e besstensesseeneensesneensestesntensesneenes 59
IMODIM/LVLC Vi .ottt ettt ettt ettt ettt et e et e e s et e eesteest et e saeemt e seeaeenteaseensensesaeentesteentansesneenes 59

MODM/LVLC_ORDERI ...ttt ettt ettt sttt sttt sttt sb e ebes 59

IMODM/LVHC Vit sttt s b e sa e bttt ene b b nes 59

MODM/LVHC_ORDERI ..ttt sttt sttt ettt ettt st ettt sh et sbe et e be s bt et e s bt et e nbesaeenbesbeentenbesaeenee 59
MODM/LVHC_ENABLET ...c.vteitetieeeeiesitetesteste et e e ste st e teseeensessesseessesseeseensesseensesseensensesseensessesssensessennes 59
V0T T oA R T | XSS 59
VO Tm T o4 A O I o X S 59
MODM/HVHC _LABELI ...ttt sttt ettt ettt et s b et sht et sbe et b sbe et e s bt et e nbesbeenbesbesaeenbesaeenee 59
IMODIM/HVLC Vit sttt ettt et et h et e bt bt e e she e st e bt s ae et e e bt eat et e sbeenbesbeeneenbesaeenee 59
MODM/HVLC_ORDERI ..ttt sttt ettt ettt et b et sht et sbe e st e besat et e s bt eatenbesbeentesbeeneenbesaeenee 59
VT T o4 2 A O S 60
MODM/HVHC_ORDERI....cuteteiieeieteseeiesiesetesteseetestesseessesseessessesseensessesssessesssensessesssessesssensessesssensensennes 60
MODM/HVHC_ENABLET ...c.veeutetieeeeieseetesteseee et e e este et estestesssessesseessesseestessesssensessesnsessesssensessesseensensennes 60
IMIODIM/HVHC LI ettt ettt st e st sh e e s bt e st et e eae et e beeaeentesaeemtesbeeatenbesaeenes 60
MODM/HEATERXENABLE ..ottt ettt ettt sttt sb et e bt et e besae et e b e et e steeaeebesbeent e besaeenee 60
MODM/HEATERXFORCEccuteiieeieiesieeiesieseeeteseetesteeseesesseessessesseensessesssessesssensessesssensesssensessesseensessennes 60
MODM/HEATERXFORCELEVELcotiiuieiesiieeteieseeteteete e st etestesteestesteestessesssensessesssessesssensessesssensenseenes 60
MODM/HEATERXLIMITitieiieiieieeie st etestesetete s e etesteeseetesseessessesseensesseestessesssensessesssesesssensessesseensensennes 60
MODM/HEATERXTARGET ...ttt sttt ettt sttt ettt et bt et e te bt et e sbe e st e besae et e s bt eatentesaeenbesbeentebesaeenes 60
MODM/HEATERXSENSORcotiiuieieitteieete ettt ettt et et e st st e stesb e besbeestesbesaeentesbeeatentesutentesaeeneenbesaeenes 60
MODM/HEATERXSENSORTYPEcottiuteieteeiteteete ettt et e et et et sbe e e sbeestesbesueeeesbeeaeestesaeentesbeeneebesaeenes 60
MODM/SENSORXTYPE.......eitiitirtiteieieitete ettt sttt sttt ettt be sttt ettt a e bt ebesbesb et et et et eneeaeenesbesbensen 60
MODM/SENSORXCURRENT ..ottt sttt ettt sttt sttt b e bt bt se et et et et e eseeneebeneennen 61
MODM/SENSORXLOWERLIMIT ...ttt ettt sttt ettt be b ettt ettt eneebeneenen 61
MODM/SENSORXUPPERLIMIT ...c..eiititteieteeetesieeteete sttt e see st et e ste st etesbeestesbesaeeneesbeeaeentesaeenteseeeneansesaeenes 61
MODM/SENSORXFILTERetettitietesteetestestte e st e e bt st et e seeeatestesaeentesbeentebesaeeneesseeneentesaeentestesntensesneenes 61
IMODM/HEATERXP ...ttt ettt ettt ettt ettt ettt et e e e s a e et esbeeb e et e sbeent e beeaeenee s bt eatentesaeensesbeentensesneenes 61
IMOD IM/HEATERXL. ..ttt sttt sttt ettt b et b et ettt e bt besb e st et et et et e st eaeeneebenaenben 61
IMODIM/HEATERXIL ..ttt sttt sttt b ettt et b e bt ebesb e b et et et e st eaeeneebenbeben 61
IMODM/HEATERXD ...ttt ettt st sttt ettt be bt et et et e st e bt e bt s b e sb e b et et enteneeaeenesbesbeeen 61
MODM/HEATERUPDATETIMEciiititteieieetceieeteete st e e steetesteseeetesaeeneessesaeeneesseensestesneensesaeeneensesaeenes 61
MODM/HEATERXRAMP ...ttt et ete sttt ettt et e e se e et estesst e besaeentebesseensesseensensesneensesteentansesaeenes 61
MODM/HEATERXRAMPRATEouiiieiiieieeieeetestee it ete st e esteseeeatestesaeentesaeestensesseensesseeneentesaeensesaeeneensesaeenes 61

MODM/HEATERXLABEL ...ttt ettt sttt 61

MODM/SENSORXLABEL.....cucitiitiieieieieit ettt sttt s sa ettt sne b nes 62

MODIM/DIO_LABELI ..ttt sttt ettt sttt st b ettt sbt et she et e beshe et e e bt eatenbesbeenbesbeeatenbesaeenes 62
MODM/DIO_SOURCET ..c.vviiuieeieeiteesteesteesttesteesteesteesteestaesseessaessseeseesseastaasssesssesasesnseeseessesssansssssssessessens 62
MODM/DIO _DIRiccutiiiiieiiieiieeite et esteesteesteseteesteesteesteesbaessaesssessseeseassaasssasssesssesasesnseeseenseessensssesssessensens 62
MODM/DIO_POWERoiiii ettt et et e site e te e teete e teesbeesteestaesabeeabeesteastaasssesasesasesabeenseeseessaassaesssesnsenssen 62
MODM/VCPU_LINES ...ttt sttt ettt ettt ettt b ettt sht et e s bt e st e b e she et e s bt eatenbesbeenbesbeeneenbesaeenes 62
MODIM/VCPU_LINET ...ttt sttt ettt ettt ettt st sbt et e bt e st et e sht et e e bt eatenbesbeentesbeentenbesaeenee 62
MODM/VCPU_INREGIiutteitetiettete sttt sttt ettt ettt satesbesbtebesheest e besaeente s bt easenbesbeentesbeeneenbesbeenes 62
IMODIM/HS _LABELI .veevteitteitieeieeteesteesteestesteeteesteesteesbaessaesssesaseensaessaassaasssasssesssesnseenseensesssensssssssesssensens 62
MODM/IMAG_LABELI ..ecuvvietveeie et et eeteeetteete ettt esteesteesteestaesabeesbeesteasteesssesasesasesaseenseesseessaesssssssesnsennses 62
IMODIM/HS_LABELI .veevtiitteitieeieeeteeeteesteestteeteeteesteesteesteessesssseesseenseesseassaasssesasesasesnseenseenseessaesssssssesssesnses 62
IMODIM/IMIAG Vit st ettt a et s bt et esbesh e et e sbeeat e bt sae et e bt eatentesaeenbesbesaeenbesneenes 62
IMIODIM/OFS Vit ettt sttt ettt et e s bt et esbesh e et e sbeeat e bt eae et e beenteabesaeentesbeeneanbesaeenes 63
MODM/LYDS_LABELI ..ecuvviitiieie et ettt e ctteeteete bt esteesteesteestaeeabeebeesseestaasssesasesasesaseenseesseessaesssssssesnseenses 63
MODM/XVP_LABELI ...veiveeiiie ettt ettt e eteeteete et e vt esteesteestaeeabeenbeesteestaasssesasesasesabeenbeeseessaesssssssesnseenses 63
MODM/XVIN_LABELI...veiiteeiuieeieeie et et e steeteecteeeteesteesteesteestaeeabeebeesseasssesssasasesasesaseeseesseessassssssssesssensses 63
IMMODIM/XVP Vit ettt ettt ae et s bt et esbesh e et e sbees e e bt eat et e beeabenbesaeentesbeentenbesaeenes 63
IVIODIM/XVN_ Vi cooeteeeeeeeeeeeeee et eesee et esetesaeeesaseseesaeesesaeseseseeesseesesasaesssesasseseeasessaesessessssaeseeesesenees 63
MODM/XVP_ENABLET ..c.vviitviiieeteecteeseesteeste e e teesteestee s e e ssaessteestaeteesseesssesasesnsesnseenseesesssesssesssessnsennsens 63
MODM/XVN_ENABLEI....cvtettrtirteteteteiteie ettt sttt ettt sttt st sa et ettt es e bt sb e sae b et et et eseeaeenesbesbennen 63
MODM/XVP_ORDERI......ceutittrtirteteteteit ettt ettt sttt ettt b s bbbttt e st ebeebesbesa et et et et eneeaeesesbeseensen 63
MODM/XVN_ORDERIettitirtirteieteteit ettt sttt b sttt ettt b e bt sbesb et et et et eneeaeeseebenbennan 63
1T YL =00 = S 64
INSTIUCTIONS et e e st e e e b e e e s e e e e e s sb et e e s sbeeeessareeeessaneneessanes 64
I YL =0T ol o SN 65
TIMING COTE STAES ceiiiiiiiiiiietite ettt e e e e e s sttt e e e s e s st tbaeaeeesssssssbtraaaeessssssssssseeeeesssnssnssnnne 67
SaMPliNg aNd DEINLEIIACINGvveeiieieee e e et e e e et e e e et e e e e sbaeeeesstaeeesntaeeesnnes 69
2 LYY= T8 Y o] LTSRSt 70
FramE BUFFEIS. ..ttt ettt ettt e bt e s bt e s ae e st e et e e bt e be e s bt e sbeesaeeeabeeneean 71
LG U] B TP P PP OUSPPPPPPPPPPOPPR 72
R A =100 1 - | o TSRS 74

LR Y g Yol 4T o A -1 o T UPPSRRY 74

BT g Y= = 1T -1 o USRS 75

PArAMETEIS TAD ..ttt sttt ettt e b e s bt st e sttt e bt e b e b e be e shee et e entean 75
LY L0 U 1= o T PP 76
(01D YA =11 01 A =] TSROSO 76
T g Y=L I o TSP 76
PIOT TADS. ..ttt ettt ettt s h e sttt et b e e s b e ae e sa bttt e bt e b e e abeenhe e eneeeateentean 77
RAW TBS . ettt ettt b e bt st st e bt e b e sh e e s aeesa bt et e e bt e b e bt e ne e et e enreenrean 77
ADC TaD ettt ettt b e b et eh ettt e bt e b e e she e e st e eab e e bt e bt e beeeneeenreennean 77
D1V -1« T USRS P PP VOT PP 77
BIaS TaDS ittt ettt st e et e e s be e e s be e s bt e e ehte e s be e e sabeesabeeeaateesbeeenares 77
2 T [ol oY 0] o] L= PSP 78
LG o T oo 112V USRRNt 85
VCPU ettt et h e h e et e bt e e bt e e bt e e a et e a bt e b e e bt e bt e e Rt e ea et et e e Rt e ekt e eheeea e e e bt e bt e beeabeeabeesateearean 86
V4Ol U o T = =] o E PP PTPTRTPPPRE 86
LV L0 U 0 o ol Yo =PRI 87
VECPU I/ ittt ettt et e et e et e et e et e e sbe e s teestbesabeeabe e beesbeesbaeesbeeabeenbeesbaastsesabesaseenbeenbeenssesaseenseensens 90
VL0 WY1 oY o] 1ol 2 o =4 = o o F PP 91
Appendix A: Test Clock Configuration FilEc..eeiiiiiiiieciiee ettt esare e e e rre e e e aaaeeean 95

Appendix B: Basic Example Configuration File..........c.eeioiiir it e 99

Introduction

Archon is a high performance modular CCD controller developed by Semiconductor Technology
Associates, Inc (STA). This manual provides an overview of the controller followed by detailed
descriptions of the hardware and software. A top level block diagram is shown in Figure 1.

Archon

Gigabit

Ethernet
<—p{ CCD

DC Power

Figure 1: Top Level Block Diagram

An Archon system receives configuration information from and sends status and image data to a host PC
via a gigabit Ethernet connection (either copper or fiber). Power is supplied to Archon through a circular
connector carrying the DC voltages necessary for a particular system, or through a standard AC power
cord for Archon AC. The CCD to be operated is connected to Archon through a custom interface board,
built to route signals from the CCD cabling to the internal Archon module connectors.

Archon Feature Summary

e Compact size: Standard chassis is 11.5” x 8” x 4.5” (29.21 x 20.32 x 11.43 cm),
Archon AC chassis is 11.5” x 8” x 7”.

e Modular: 12 slots for ADC, clock driver, bias, heater, or other custom modules

e Dense: Up to 4 ADC modules for 16 total CCD outputs

o Low weight: 8.5 lbs (3.9 kg) for a typical 4 channel system, 17.5 Ibs (8kg) for a 16 channel Archon
AC system

e Low power: 41 W for a typical 4 channel system, 89W for a 16 channel Archon AC system

e High dynamic range: 108 dB at 100 kHz, 98 dB at 1 MHz using 16 or 32 bits per sample

e Easy interfacing: standard gigabit network interface, either copper or fiber SFP module

e On-board frame buffer: 2GB RAM for flexible readout

e Timing core: 100 MHz master clock for 10 ns timing resolution

e ADC Module: 4 fully differential AC-coupled 100 MHz 16 bit channels using digital CDS, and
software selectable 1.33 V or 4 V input range

e ADM Module: 18 fully differential DC-coupled 12.5 MHz 18 bit channels using digital CDS, and a
6 Vinput range

Introduction 9

o Clock Driver Module: 8 or 12 channels of 100 MHz 14-bit DACs for generating slew-rate
controlled, multi-level clocks from -13.000...+13.000 V

e Low Voltage Bias Module: 30 total biases at -14.000...+14.000 V, with 6 high power channels
supplying up to 500 mA each (programmable current limit), and 24 low power channels
supplying up to 10 mA each (1 A max total current per module)

e High Voltage Bias Module: 30 total biases at 0.000...+31.000 V, with 6 high power channels
supplying up to 250 mA each (programmable current limit), and 24 low power channels
supplying up to 10 mA each (1 A max total current per module)

e XV Bias Module: 4 channels at 0.000...+95.000 V and 4 channels at -95.000...0.000, each
supplying up to 50 mA

e HeaterX Module: Two 25W heater drivers (intended for 25 Ohm resistors) and three
temperature sensor channels, with programmable excitation currents from 25 nA to 1.5 mA

e High Speed Clock Module: 12 channels of LVDS clocks with 1 ns resolution, 12 clock magnitudes
from 5.000...14.000V (up to 1A each), 12 clock offsets from -14.000V...+14.000V (10 mA each)

e LVDS Clock Module: 16 channels of LVDS clocks with 10 ns resolution, +3.3V, +/-5V, +/-16V
supplies (1A each)

e Digital I/O: General purpose digital I/O lines powered internally or externally are on the LVBias,
Heater, HS and LVDS modules (8 lines on LVBias/Heater, 4 lines on HS/LVDS)

e Programmable I/O: Modules with digital I/O lines contain real time 16-bit CPUs that can be user
programmed for interface tasks

e All biases monitor current and voltage

e Triggering: opto-isolated BNC input and output

e Synchronization: multiple controllers can be synchronized over dedicated Cat5 cable

e Software: example GUI application provided with source for Windows/Linux/OSX

e Temperature: operating range -20C to +40C

Basic Operation

High level system configuration is accomplished by a 32-bit CPU embedded in the Archon backplane
master FPGA. This CPU communicates with an upstream host (typically a data capture computer) via
gigabit Ethernet using a human-readable serial text stream of commands and responses. The 32-bit CPU
translates high level camera configuration commands from the host (bias voltages, clock timing, etc.)
into low level commands for the FPGAs on each installed module (DACs, ADCs, etc).

The clock sequences needed to read out a CCD are generated by timing cores embedded in each FPGA.
The backplane supplies a master 100 MHz clock to all timing cores. The timing cores are simple
processors/state machines, with an instruction set composed of NOPs, GOTOs, CALLs, and RETURNSs.
Each instruction executes in a single master clock cycle (10 ns). Instruction execution can be conditional
on user-set parameters. The call stack allows subroutines to be nested 16 deep. Each instruction in
memory has an associated set of output signals for that clock state specific to a particular module,
including clock voltage levels, clamp and sample timing for the ADCs, and triggers.

Introduction 10

Clock Driver Module

Each clock driver module has 8 channels (or 12 for DriverX) of 100 MHz 14-bit DACs, with output swings
of -13.000 V to +13.000 V (~2 mV resolution). Every clock driver has a target voltage that is set at each
10 ns clock tick. Each clock slews towards its current target at a selectable fast or slow rate. The fast
and slow slew rates are configurable per channel, and the slew rate can be changed to fast or slow at
each clock tick. This flexibility makes it possible to extract maximum performance from a CCD. For
example, a CCD area clock could be programmed to slew slowly from inversion to a voltage just out of
inversion, followed by a fast slew to its nominal high level, minimizing spurious charge and maximizing
the readout rate. The same clock could then go to a very high voltage during integration to optimize
MTF. The clock drivers have a series 50 ohm resistor, which is usually the limiting factor for the
maximum slew rate when driving heavy capacitive loads. For light loads, the 10% to 90% time for a 10V
swing is typically 22 ns at the maximum slew rate.

DC Bias Modules

Each bias module provides 30 programmable DC biases, 0.000 to +31.000 V for the HVBias module, and
-14.000 to +14.000 V for the LVBias module. On each bias module, there are 6 high power (250 mA HV,
500 mA LV) biases and 24 low power (10 mA) biases. The high power biases have programmable current
limits. Note that while each high power bias is rated for 250/500 mA, the combined current from all
biases on a single module cannot exceed 1A. The current and voltage of each bias is monitored, both for
calibration when the bias is set and to assist in debugging system faults.

The XV bias module provides 8 programmable DC biases, with four channels that range from 0.000 to
+95.000 V, and four channels that range from -95.000 to 0.000 V. Each channel can supply up to 50 mA.
The current and voltage of each bias is monitored, both for calibration when the bias is set and to assist
in debugging system faults.

The biases start at 0V. When a “Power On” command is given, the biases rise to their nominal levels.
The power-up sequence can be controlled by assigning a step number to each bias. Step 1 biases will go
to their target values first. Their levels will be checked, and then step 2 biases will come up, and so on
until all biases are at their nominal voltages. During a power down, the sequence is reversed. This is
useful for CCDs that require particular power-up sequences to avoid damage. All of the clock drivers
and biases are isolated from the CCD by solid state relays. Beyond the relays are weak (100k, 1M on
XVBias) resistors to ground. The relays only connect the biases and clocks to the CCD when all Archon
power supplies are at nominal levels and the FPGA has commanded the relays to engage. If the FPGA is
reset, or one the system power supplies goes bad, the relays are opened and will not close again until
the system has been reconfigured.

The LVBias module additionally has 8 general purpose digital 1/0s, which can be powered by an internal
+3.3V or by an external supply from +1.65V to +5.5V. Each group of 2 I/Os can be configured as inputs
or outputs. When an output, each line can be driven high, low, or by the timing core. In addition, the
digital 1/0 lines can be controlled by a dynamically programmable embedded 100 MHz 16-bit CPU for
simple interface tasks, such as communication with an RS-232 vacuum gauge or 12C temperature sensor.

Introduction 11

Improved versions of the bias modules have been introduced, called the HVX and LVX bias modules.
They have identical functionality to the standard bias modules, but add additional buffering that enables
much faster background bias polling. Note that the new extended bias modules are longer than
standard modules, and can only be installed in slots 3-4 and slots 9-12.

ADC Module

Each ADC module has four 100 MHz 16-bit channels with preamps, designed for CCD pixel clocks of up
to 3 MHz. Up to four ADC modules can be installed in an Archon chassis. The preamps are fully
differential and AC-coupled. The preamp gain is software selectable, and can be set for either a 4V or
1.33V full scale input. Because the preamps are AC-coupled, an integrated DC-restore clamp must be
activated periodically. Clamping is usually done once per line, either during overscan pixels or during
the vertical transfer. The clamp level is programmable to map the CCD reset level near the top of the
ADC range. Correlated double sampling (CDS) is performed digitally in the FPGA, which allows multiple
reset and video levels to be averaged, driving noise down as the pixel clock is reduced. For typical CCD
timings at high gain (full scale = 1.33V), noise is 0.79 DN (16 uV RMS) at a 1 MHz pixel clock with a
grounded input, and 0.28 DN (5.7 uV RMS) at 100 kHz. At low gain (full scale = 4V), noise is 0.66 DN (40
uV RMS) at a 1 MHz pixel clock with a grounded input, and 0.24 DN (15 uV RMS) at 100 kHz. The
previous values assume 16 bits per pixel. Digitizing signals with noise less than the equivalent of 0.5 DN
at 16 bits requires additional bits per pixel. 32 bits per pixel can be acquired in the controller’s high
dynamic range mode. In addition to the normal CDS pixel data, portions of the raw ADC data can be
simultaneously captured to a memory buffer. This allows a detailed, low-noise oscilloscope view of the
CCD output waveform during device tuning. The raw waveforms simplify the examination of clock
feedthrough, reset level stability, and optimal CDS sample points.

ADM Module

Each ADM module has eighteen 12.5 MHz 18-bit channels with preamps, designed for pixel clocks of up
to 5 MHz. Up to four ADM modules can be installed in an Archon chassis. The preamps are fully
differential and DC-coupled. The input range is 6V (+3V to -3V differential). Correlated double sampling
(CDS) is performed digitally in the FPGA, which allows multiple reset and video levels to be averaged,
driving noise down as the pixel clock is reduced. For a grounded input with 200kHz timings, noise is
0.13DN (11uV RMS). The ADM modules use Archon’s normal 100MHz 16 bit data path to the CDS
processor. To accomplish this, an 18 bit sample is truncated to 16 bits, and replicated 8 times. The
truncated 16 bits are then dithered during those 8 sample periods so CDS averaging will recover the
original 18 bit value. In addition to the normal CDS pixel data, portions of the raw ADC data can be
simultaneously captured to a memory buffer. This allows a detailed, low-noise oscilloscope view of the
CCD output waveform during device tuning. The raw waveforms simplify the examination of clock
feedthrough, reset level stability, and optimal CDS sample points.

Introduction 12

High Speed Clock Module

The high speed clock modules are intended to drive external high speed clock buffers. There are 12 high
speed channels. Each channel has an LVDS output with 1 ns timing resolution. Each channel also has a
clock magnitude programmable from 5V to 14V capable of sourcing 1A, and a clock offset
programmable from -14V to + 14V that can source/sink 10 mA. Each clock magnitude and offset is
monitored for voltage and current. Clock magnitudes and offsets power on and off at step 1 of the
power sequence.

The high speed clock module additionally has 4 general purpose digital I/Os, which can be powered by
an internal +3.3V or by an external supply from +1.65V to +5.5V. Each I/O can be configured as an input
or an output. When an output, each line can be driven high, low, or by the timing core. In addition, the
digital I/0O lines can be controlled by a dynamically programmable embedded 100 MHz 16-bit CPU for
simple interface tasks, such as communication with an RS-232 vacuum gauge or I12C temperature sensor.

LVDS Clock Module

The LVDS clock modules are intended to drive external high speed clock buffers. There are 16 LVDS
channels with 10 ns timing resolution. +3.3V, +/-5V, and +/-16V supplies are also provided. The supplies
power on and off at step 1 of the power sequence.

The LVDS clock module additionally has 4 general purpose digital I/Os, which can be powered by an
internal supply of +3.3V or by an external supply from +1.65V to +5.5V. Each I/O can be configured as an
input or an output. When an output, each line can be driven high, low, or by the timing core. In
addition, the digital I/0 lines can be controlled by a dynamically programmable embedded 100 MHz 16-
bit CPU for simple interface tasks, such as communication with an RS-232 vacuum gauge or 12C
temperature sensor.

Heater Module

Each heater module has two output channels, intended to source up to 1A each at up to 25V while
driving a heater element (typically 25 ohms). There are also two temperature monitoring channels,
which source precisely 10 uA each and are intended to monitor silicon diode temperature sensors via a
four wire force/sense interface. A PID loop can be used to drive either heater output based on either
temperature input. Heater power is taken from a dedicated line on the Archon power connector for
flexibility.

The heater module additionally has 8 general purpose digital I/Os, which can be powered by an internal
+3.3V or by an external supply from +1.65V to +5.5V. Each group of 2 I/Os can be configured as inputs
or outputs. When an output, each line can be driven high, low, or by the timing core. In addition, the
digital 1/0 lines can be controlled by a dynamically programmable embedded 100 MHz 16-bit CPU for
simple interface tasks, such as communication with an RS-232 vacuum gauge or I12C temperature sensor.

Introduction 13

HeaterX Module

The HeaterX module is an upgrade to the Heater module. It has the same two 25W heater outputs, but
has three temperature monitoring channels with precision current sources programmable from 25 nA to
1.5 mA in 25 nA steps, compatible with silicon diodes or RTDs.

Archon Chassis

The Archon chassis is built from aluminum, with electrically conductive chem film internal surfaces for
shielding, and anodized external surfaces for durability. An 80mm fan with filter on the rear face cools
the internal components with ambient air, which is channeled past the modules and then exhausted
through ducts on the same face as the fan intake. The front face is customized to accommodate the
connectors needed for a particular CCD.

Power for the standard chassis is supplied as a set of DC voltages through a circular bayonet connector.
The DC supply lines pass through a power conditioning board, which keeps the power lines disconnected
from the rest of the system until all voltages are at their nominal values. The voltages necessary for a
particular system vary depending on the installed modules. Jumpers on the power conditioning board
allow the user to select which voltages should be monitored for a system. Linear or switching external
power supplies can be used to generate the system DC voltages, depending on a particular application’s
need for low noise or high efficiency.

The Archon AC chassis uses a standard IEC AC power cable, and has internal DC-DC converters. The
Archon AC chassis also comes with an integrated water block with 3/8” (9.5mm) copper tubing for
optional liquid cooling, and the fan can be disabled in software.

Introduction 14

Backplane X12

The Archon backplane is responsible for communication with the host system, along with
communication and power distribution for the installed modules. The X12 variant can support 12
installed modules, of which 4 can be ADC modules. Processing is done by a 32-bit soft processor
embedded in the backplane Kintex 7 FPGA for older systems, and by a 64-bit ARM processor for Rev H
backplanes. The CPU has 2 GB of DDR3 RAM, with 512 MB reserved for the processor and three 512 MB
frame buffers. 16 MB of flash memory stores firmware and controller configuration data.

Communication

All communication goes through the onboard FPGA. The embedded CPU communicates with an
upstream host system through an SFP socket, which can be populated with either a fiber or copper
gigabit Ethernet module. Rev H backplanes have a dedicated copper gigabit ethernet port, with an
additional SFP socket which supersedes the copper interface when populated with a fiber SFP module.
Note that the socket communicates only at a gigabit rate; it is not backward compatible with 10 or 100
megabit networks. The CPU listens for a TCP/IP connection on port 4242 to initiate communication.
Rev F and older backplanes can only support a single connection at a time. For this reason, and to avoid
network contention, the Archon controller is normally connected to a dedicated network port on the
host system. Rev H backplanes currently support up to four simultaneous connections.

Hardware Triggers

The backplane has connections to two BNC connectors on the chassis, Trigger Out and Trigger In. The
electronic Trigger Out interface is shown in Figure 2. The output can be optoisolated, or optionally
directly driven with a 499 ohm pull-up to 5V on the positive line and the negative line tied to ground.
Refer to the FOD817 datasheet for specific performance information for the optoisolator. In general,
the output will sink 10 mA with a saturation voltage < 0.5V when on. The Trigger Out signal can be
forced high or low, or connected to a timing core clock (the INT control signal, for exposure integration
time). This is typically used to drive a shutter or light source.

Rev F and newer versions of the backplane have separate optoisolated and driven Trigger Out circuits
that are selected by connecting the Trigger Out cable to the desired header, as seen in Figure 3.

The Trigger In circuit is shown in Figure 4. A 3.3V input at 2 mA is sufficient to trigger the optoisolator.
Inputs up to 10V are tolerated. The Trigger In signal can be connected to the timing core reset input.
This is typically used to trigger a new frame.

Backplane X12 15

[TRIGOUT

TRIGPWR

u1s8

R84
el
+1%
PsvD} R o 1 0603 0.1W
499 £1%
0603 0.1W =z
2
CPC1018N
U20
Re6 1 P6
240 £1% L[,
0603 0.1W =z
2

FOD817DSD

GND
U2l
1
z
2
™|
101 cpcioisN
) ENDS33IN
-
o~

Figure 2: Trigger Out Schematic (Rev E and earlier)

Backplane X12

,—2

09-65-2028

16

RS86 ;
TRIGOUT 1 4 Pé
240 £1% L,
0603 0.1W AN 3
2 3 09-65-2028
FOD817DSD
GND
P5VD
37
0—| |I-GND
Wl OLUF£10%
1 0603 s0v X7R
o Pll
2 > 4 Ro6R
TRIGOUTD oA Y 1
1 g 240 £1% 2
oF & 0603 0.1W
OF © 09-65-2028
N
SN74AHCTIGI25DCKR
GND GND GND
Figure 3: Trigger Out Schematic (Rev F and later)
P3V3
ul17
R81 R82 6 crﬁ |
A A\ i I||. GND
P5 240 £1% 240 £1% 0.1uF +10%
. 0603 0.1W D;)603 0.1W 1 0603 50V X7R
2 — MMBZ5231B-7-F 5
09-65-2028)
R83 3
499 1%
0603 0.1W

ACPL-M61L-000E

Figure 4: Trigger In Schematic

Backplane X12

17

Synchronization (Backplane Rev. D and earlier)
The Sync RJ-45 jack on the backplane is provided to facilitate the synchronization of multiple Archon
controllers. The external synchronization interface consists of 3 LVDS receiver pairs, with 110 Ohm
internal termination. The connector pinout is shown in Figure 5. EXTCLK is routed to a PLL which
generates the master 100.0 MHz clock from either an internal 25.0 MHz clock or from EXTCLK when in
external master clock mode. EXTRESET and EXTLOAD are connected to the RESET and LOAD signals for
all timing cores in external master clock mode.

J1

EXTRESET P
EXTRESET N

EXTLOAD P
EXTLOAD_N

EXTCLK P
EXTCLK N

O~NOOU A WN -

5555764-1

Figure 5: Sync Connector

To synchronize multiple systems, an external 25.0 MHz LVDS clock must be applied to EXTCLK. Hold
EXTRESET high, apply the desired system configurations (including configuration key “EXTCLOCK = 1”) to
all systems, and then release EXTRESET. All controllers will then begin executing their timing scripts
synchronously. To synchronously update a timing parameter, issue the “PREPPARAM” command to all
systems, and then pulse the EXTLOAD signal. All controllers will remain in lockstep indefinitely under
these conditions. Note that removing EXTCLK from a controller while in external master clock mode will
cause the system to hang. The controller will reboot if the clock is reconnected, and need to be
reconfigured.

Synchronization (Backplane Rev. E and later)

Rev. E and later Backplanes were designed to allow either daisy-chained or star topology controller
synchronization. Two RJ-45 connectors (SYNCIN/J1 and SYNCOUT/J2) are provided on the backplane for
synchronization of multiple Archon controllers. The synchronization interface consists of 3 LVDS pairs.
The SYNCIN receivers have 110 Ohm internal termination. The connector pinouts are shown in Figure 6.
EXTCLK is routed to a PLL which generates the master 100.0 MHz clock from either an internal 100.0
MHz clock or from EXTCLK when an external 100.0 MHz clock is detected. EXTRESET and EXTLOAD are
connected to the RESET and LOAD signals for all timing cores when an external clock is present.

J1 J2
INTRESET N

INTLOAD P
INTLOAD N

INTCLK P
INTCLK_N

EXTLOAD P
EXTLOAD N

EXTCLK P
EXTCLK N

ONOUAWN R
O~NO OB WN P

5555764-1 5555764-1

Figure 6: Sync Connector

Backplane X12 18

INTCLK, INTRESET, and INTLOAD are driven by EXTCLK, EXTRESET, and EXTLOAD when an external clock
is present, or by the internal 100.0 MHz clock, RESET, and LOAD signals when no external clock is
detected. To synchronize multiple systems in a daisy chain, connect standard Cat-5 network cables from
the SYNCOUT of each system to the SYNCIN of the next system. The first system in the chain (the
master) will have no SYNCIN connection, and the last system in the chain will have no SYNCOUT
connection. Keep all timing cores in reset (Give the “HOLDTIMING” command to either the master or all
systems). Apply the desired system configurations to all systems. Release the timing cores from reset
using “RELEASETIMING”. All controllers will then begin executing their timing scripts synchronously.
Note that there is a static delay between systems of about 10 ns plus cable propagation delay. To
synchronously update a timing parameter, issue the “PREPPARAM” command to all systems, and then
give the “LOADPARAM” command (either to the master system or all systems). All controllers will
remain in lockstep indefinitely under these conditions. Note that unplugging the sync cables during
operation may cause the system to hang. The controller will reboot if the clock is reconnected, and will
need to be reconfigured.

If it’s necessary to eliminate the static delay associated with the daisy chain topology, it is also possible
to build a simple “sync box” that outputs a common 100.0 MHz clock, RESET, and LOAD signal to all
controllers in a star topology.

Power

Power is supplied to the backplane through two power connectors. The pinout is shown in Figure 7.
The 2.5V and 5V inputs are required to power the backplane. The other voltages need only be applied if
installed modules require them. Typically, the power board (described later) monitors and gates the
supply voltages and passes them to these connectors once all are at nominal levels. The backplane
communicates with the power board via an IDC cable connected to P9, with the pinout shown in Figure
8.

P1 P8
Molex Header 6X2 39-28-1123 Molex Header 8X2 39-28-1163
P2V5D 17 P&V 1 9
|_: 2 8 N6V 2 10
P5VD 3 9 P17V 3 1
4 10 N17V 4 12
5 11 P35V 5 13
6 12 N35V 6 14
USER 7 15
— HEATER 8 16
GND

Figure 7: Power Connectors

Backplane X12 19

P9 R16 R17 R2
4.7k 1% 4.7k 1% 4.7k £1%

2 g 0603 0.1W [0603 0.1W | 0603 0.1W
4 3
6 5 SCL
g8 7 SDA
9 PWRGOOD

10
EHT-105-01-S-D

GND GND
Figure 8: Power Communication

Modules

12 modules can be installed on the backplane. Most modules can be installed in any slot. The HVX Bias,
LVX Bias, and HS modules are exceptions, and can only be installed in slots 3-4 or 9-12 because of their
extended length. ADC modules can only be installed in the central 4 slots (5-8), which have an
additional connector that carries the high speed ADC data. The module connector pinout is shown in
Figure 9. A module indicates that it’s installed by grounding the PRESENT signal. A module indicates
that it is overheating by pulling the OVERHEAT signal low. A module is commanded to power down
when the STANDBY input is low. The 100 MHz master clock is supplied to the modules on the MCLK
LVDS pair. Timing core resets are commanded by RESET, and timing core parameter loads by LOAD.
Serial communication between the module and the backplane is done over the SERFBP and SERTBP
LVDS pairs at 6.25 Mbps. The ADC module connector is shown in Figure 10. The ADC modules are given
a low jitter 100 MHz clock on the CLK pair, and transmit back a 400 MHz clock on LCLK, a framing clock
on ADCLK, and sampled data bits on the OUT pairs.

Backplane X12 20

J2
ERM8-030-05.0-L-DV-TR

PRESENT B

1 2
overreaTs ——OUHEATE 3] La0e
STANDBY_B 5 6
MCLK P O RESET P
MCLK_N . RESET N
SERFBP P R SERTBP_P
SERFBP N w6 SERTBP N
19 20
P2V5D} 21 22 |P2V5D
23 24
PSVD} 25 26 {P5VD
27 28
P6V| 29 30 {P6V
31 32
N6V} 33 34 N6V
35 36
P17V} 37 38 {P17V
39 40
N17V| 41 42 IN17V
43 44
P35V} 45 46 {P35V
47 48
N35V| 49 50 {N35V
51 52
HEATER} 53 54 |HEATER
55 56
USER} 57 58 JUSER
59 60
GND GND

Figure 9: Module Backplane Connector

JE4RM8-O3O—05AO-L-DV-TR
1 2
== e B ——inc
—o v e
— 11 12
— s s s
— 17 18
— kR ouT P4
— 23 ;4 OUT_N4
— & 48t
— 29 30
— 5w —Haxs
— 35 36
—r o —lan
— 41 42
— e R
— 47 48
—u = e
— 53 54
— gt
— 59 60
GND GND

Figure 10: ADC Module Backplane Connector

Backplane X12

ADC Module

The ADC module simultaneously samples four fully differential inputs at 16 bits and 100 MHz. The raw

samples are transmitted to the backplane for digital CDS processing. The input buffer is shown in Figure

11. By default, R10 is not installed. A single-ended or differential termination resistor could be installed
there, or a load resistor for a JFET buffer near the CCD output. The CLAMP_P and CLAMP_N biases are

generated by DACs, and are connected through analog switches to reset the DC level of the Q1 JFETs
(typically once per line). The clamp levels are normally chosen to set the DC differential input voltage

near the top of the ADC input range.

The preamp stages following Q1 have two selectable gain settings, set by resistors. The default gain

resistors set the full scale differential input swing to either 1.3V or 4V, but can be modified if necessary

for a particular user application. Measured low gain is 65.8 uV/DN (4.31V full scale). Measured high

gain is 21.9 uV/DN (1.43V full scale). There is a low-pass filter before the ADC with a time constant of 10

ns (-3dB at 15 MHz).

PISVA
c1
1 I|I GND
- 0.1uF +10%
0603 50V X7R
c3 B
[IN.N R2 || 4 LSK489-50T23-6
m— 1
32093 011/\°N 0.047uF +5% L
: R3 1206 50V NP0 ©
e R4 BUF N
0603 0.1W o
PSYA RS 0603 0.1W
= 15k £1%
GND 0603 0.1W
o1 c7 I
[.
CLAMP N R8 BAV199 Il {II- D
gh1o 49.9 +1% 1 oduF=10%
Jaom a1 0603 0.1W Ni5VA 080350V X7R
1206 0.25W :
PI5VA
N5VA
N
C10 Al QLA
I R12 T 1 LSK489-SOT23-6
49.9 £19 Il
06093 0 1/{’,\, 0.047uF £5% -
’ R14 1206 50V NPO ™
IM 1% RIS BUFP
0603 0.1W o
PSVA R16 0603 0.1W
= $15k 1%
GND 0603 0.1W
02 c13 I
I ,
CLAMP P R17 FBAVlQQ 11 ||I GND
0.1uF +10%
49.9 +1% 1
0603 0.1W i NIBVA 0603 50V X7R

Figure 11: ADC Input Buffer

ADC Module

22

The ADC module requires the P6V, N6V, P17V and N17V system supplies. The pinout for the ADC
module connector is shown in Figure 12.

J1
ERF8-013-01-L-D-RA-TR

3 4 AD CH e
5 6
o 10 AD iy
11 12
5 16 AD i
17 18
;2 gg AD CH P1
23 24 AD CH N1
25 26
GND GND

Figure 12: ADC Module Connector

ADC module performance measurements:

e Grounded input noise (high gain, 100 MHz): 2.6 DN
e Grounded input noise (low gain, 100 MHz): 2.2 DN
e Channel to channel crosstalk: -101 dB
(worst case, measured with 45000 DN signal on one channel, other channels grounded)
e Grounded input FFT:

2500

2000 - —

1500 —

1000 —

0 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Frequency (MHz)

Figure 13: ADC Grounded Input FFT

ADC Module

DML Errar

05

0.3

0.4

05

INL Error

10000 20000 30000 40000 50000
Code

Figure 14: ADC DNL

60000

(&l

10000 20000 30000 40000 50000
Code

Figure 15: ADC INL

ADC Module

60000

24

ADM Module

The ADM module simultaneously samples eighteen fully differential inputs at 18 bits and 12.5 MHz. The

raw samples are transmitted to the backplane for digital CDS processing. The input buffer is shown in
Figure 16. By default, R18 is not installed. A single-ended or differential termination resistor could be
installed there. The full scale differential input swing is 6V, but can be modified if necessary for a

particular user application. Measured gain is 91.5 uV/DN. There is a low-pass filter before the ADC with
a time constant of 4.5 ns (-3dB at 35 MHz).

[IN.N

[INP

P5V2A
c2
|I-eND
0.1uF +10%
0402 16V X7R
BPD
o
|0
2 -
1
R16 3 +A —
24.9 +0.1% UBA
0603 0.1W <| ADA4897-2ARMZ
C30 C13
22pF +5%
0603 50V NPO —| |—||| GND
1 0.1uF +10%
R18 NSVA 0402 16V X7R
100 +1% =
0805 0.125W GND
R17
24.9+0.1%
0603 0.1W ueB
1 Cc31 ADA4897-2ARMZ
—T22pF 5%
0603 50V NPO
GND

Figure 16: ADM Input Buffer

The ADM module requires the P6V and N6V system supplies. The pinout for the ADM module connector

is shown in Figure 17.

ADM Module

25

J1

ERF8-030-01-L-D-RA-TR

1 2
3 4
AD _CH N18 > AD_CH_N17
AD_CH P18 9 10 AD _CH P17
TR 13 1 a0y
15 16
i B 2 i
21 22
AD CH N12 gg gg AD CH N11
AD CH P12 27 28 AD CH P11
i 3 St
33 34
o o % iy
39 40
AD_CH_N6 g ii AD _CH N5
AD_CH_P6 45 46 AD_CH_P5
AD_CH N4 3; gg AD _CH_N3
AD_CH_P4 51 52 AD_CH_P3
AD _CH N2 gg gg AD CH N1
AD CH P2 57 58 AD CH P1
59 60

Figure 17: ADM Module Connector

ADM Module

26

Driver Module

Each clock driver module generates 8 CCD clocks using 14-bit 100 MHz DACs, with outputs ranging from
-13.000 V to +13.000 V. Clock levels can be set with a resolution of about 2 mV. The timing core in the

clock driver FPGA generates a new target clock level every 10 ns. The DAC outputs linearly slew toward
the new target at a software selectable fast or slow rate, yielding clean trapezoidal CCD waveforms.

The output amplifier for each clock is a THS3095, rated for 250 mA. There is a series 49.9 Ohm resistor
after each THS3095, which is usually the limiting factor for slew rate with heavy capacitive loads. There
is also an optoisolator between each clock and the output connector. Initially, the optoisolators are
open, and the pin on the output is connected to ground through a 100k resistor. When the system is
configured, each clock is calibrated. When the system is commanded to enable power to the CCD, all
clocks go to their initial levels, and the optoisolators are closed after the last step of the power
sequence.

The system supplies are continuously monitored in hardware by comparators. In the event a system
supply leaves its normal operating range, all optoisolators to the CCD are opened.

The driver module requires the P6V, N6V, P17V and N17V system supplies. The driver module pinout is
shown in Figure 18.

For firmware > 1090, the clock pattern source for each clock channel can be chosen from the 8 timing
core channel outputs. This means that if a CCD clock S1 was on channel 1, and S2 was on channel 2,
serial clocking could be reversed by assigning channel 1 to timing core output 2 and vice -versa, with no
other timing modifications necessary.

J1
ERF8-013-01-L-D-RA-TR

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26

CH7

CH8

CHS

CH6

CH3

CH4

CH1

CH2

N GND

9]
O

Figure 18: Clock Driver Module Connector

Driver Module 27

DriverX Module

Each DriverX module generates 12 CCD clocks using 14-bit 100 MHz DACs, with outputs ranging from -
13.000 V to +13.000 V. Clock levels can be set with a resolution of about 2 mV. The timing core in the
clock driver FPGA generates a new target clock level every 10 ns. The DAC outputs linearly slew toward
the new target at a software selectable fast or slow rate, yielding clean trapezoidal CCD waveforms.

The output amplifier for each clock is a THS3095, rated for 250 mA. There is a series 49.9 Ohm resistor
after each THS3095, which is usually the limiting factor for slew rate with heavy capacitive loads. There
is also an optoisolator between each clock and the output connector. Initially, the optoisolators are
open, and the pin on the output is connected to ground through a 100k resistor. When the system is
configured, each clock is calibrated. When the system is commanded to enable power to the CCD, all
clocks go to their initial levels, and the optoisolators are closed after the last step of the power
sequence.

The system supplies are continuously monitored in hardware by comparators. In the event a system
supply leaves its normal operating range, all optoisolators to the CCD are opened.

The driver module requires the P6V, N6V, P17V and N17V system supplies. The driver module pinout is
shown in Figure 19.

The clock pattern source for each clock channel can be chosen from the 12 timing core channel outputs.
This means that if a CCD clock S1 was on channel 1, and S2 was on channel 2, serial clocking could be
reversed by assigning channel 1 to timing core output 2 and vice -versa, with no other timing
modifications necessary.

J1
ERF8-013-01-L-D-RA-TR

1 2
3 4

CH11

CH12

CH9

CH10

CH7

CH8

CHS5

CH6

CH3

CH4

CH1

CH2

GND GND

Figure 19: DriverX Module Connector

DriverX Module 28

LVBias/LVXBias Module

The low voltage bias module generates DC biases from -14.000V to +14.000V, with a resolution of about
1 mV. There are 24 low current biases (LV1-LV24, 10 mA max) and 6 high current biases (LV25-LV30,
500 mA max). The high current biases also have a programmable current limit (resolution of about 1
mA, minimum of 4 mA). Total current for the module can’t exceed 1A. The voltage and current of each
bias is monitored and reported. The capacitive load for each bias should be kept below 1 uF to
guarantee amplifier stability.

There are optoisolators between each bias and the output connector. Initially, the optoisolators are
open, and the pin on the output is connected to ground through a 100k resistor. When the system is
commanded to enable power to the CCD, all biases are set to 0 V. The biases are checked, and then the
optoisolators are closed. Next, each bias is set to its operating level in a user programmable sequence.
At each step, the bias levels are checked before proceeding to the next step. The power down sequence
proceeds in the reverse order.

The system supplies are continuously monitored in hardware by comparators. In the event a system
supply leaves its normal operating range, all optoisolators to the CCD are opened.

The module also has 8 general purpose digital I/0 lines, along with a digital power line. Each pair of I/O
lines can be configured as inputs or outputs. The digital power line (DPWR) can either be driven
externally by a 1.65 V to 5.5 V supply, or connected to an internal 3.3 V supply. Current draw from the
internal power supply by external devices should be limited to 100 mA. By default, the DPWR line is set
to be driven externally, and all I/O lines are configured as inputs. A user-programmable 16-bit 100 MHz
CPU is available for simple digital I/O communication tasks. See the VCPU section for details.

The low voltage bias module requires the P17V and N17V system supplies. The low voltage bias module
pinout is shown in Figure 20.

The LVXBias module has functionality and pinouts identical to the LVBias module, but is a longer card
that only fits slots 3-4/9-12 and has additional buffering that accelerates the bias monitoring functions.

For firmware versions after 833, commands to change a bias can be given by the timing core. Bias
changes commanded this way are ignored until the system has been configured and all biases have
powered on. One bias command can be given per master clock cycle. It takes about 10 ms for a channel
to settle to a new value. If too many bias commands are given too quickly, some will be ignored. Biases
commanded this way are not as accurate as no corrections are performed. The output bias value will
typically be within +/- 50 mV of the commanded value.

LVBias/LVXBias Module 29

J2

ERF8-030-01-L-D-RA-TR

DIO4 L DIO8
DIO3 12 DIO7
Dios 5 6 Dics
7 8
9 10
Lv27 5o LV30
Lv26 L Lv29
Lv2s n2 Lv2s
e s o L
27 28
LV10 Fe Lv22
Vo az LV2l
o X Lz
39 40
- is —
45 46
Lv4 pEg LV16
ova P LVi5
Lv2 e Lvi4
Vi b vz
59 60
GND GND

|DPWR

Figure 20: LVBias Module Connector

LVBias/LVXBias Module

30

HVBias/HVXBias Module

The high voltage bias module generates DC biases from 0.000V to +31.000V, with a resolution of about 1
mV. There are 24 low current biases (HV1-HV24, 10 mA max) and 6 high current biases (HV25-HV30,
250 mA max). The high current biases also have a programmable current limit (resolution of about 1
mA, minimum of 4 mA). Total current for the module can’t exceed 1A. The voltage and current of each
bias is monitored and reported. The capacitive load for each bias should be kept below 1 uF to
guarantee amplifier stability.

There are optoisolators between each bias and the output connector. Initially, the optoisolators are
open, and the pin on the output is connected to ground through a 100k resistor. When the system is
commanded to enable power to the CCD, all biases are set to 0 V. The biases are checked, and then the
optoisolators are closed. Next, each bias is set to its operating level in a user programmable sequence.
At each step, the bias levels are checked before proceeding to the next step. The power down sequence
proceeds in the reverse order.

The system supplies are continuously monitored in hardware by comparators. In the event a system
supply leaves its normal operating range, all optoisolators to the CCD are opened.

The high voltage bias module requires the N6V, P17V, N17V and P35V system supplies. The high voltage
bias module pinout is shown in Figure 21.

The HVXBias module has functionality and pinouts identical to the HVBias module, but is a longer card
that only fits slots 3-4/9-12 and has additional buffering that accelerates the bias monitoring functions.

For firmware versions after 833, commands to change a bias can be given by the timing core. Bias
changes commanded this way are ignored until the system has been configured and all biases have
powered on. One bias command can be given per master clock cycle. It takes about 10 ms for a channel
to settle to a new value. If too many bias commands are given too quickly, some will be ignored. Biases
commanded this way are not as accurate as no corrections are performed. The output bias value will
typically be within +/- 50 mV of the commanded value.

HVBias/HVXBias Module 31

J2
ERF8-030-01-L-D-RA-TR

— 9 10—
HV27 55 HV30
HV26 L HV29
HV25] HV28
vz s 2 e
27 28
HV10 2 HV22
HVO ax FV2L
. 7 o —
39 40
. is —
45 46
HV4 P HV16
AV3 P V15
HV2 3 HV14
AVL P Vi3
59 60
GND GND

Figure 21: HVBias Module Connector

HVBias/HVXBias Module

XVBias Module

The XV bias module generates four DC biases from 0.000V to +91.000V and four DC biases from -
95.000V to 0.000V with a resolution of about 2 mV. Each can supply 50 mA. The voltage and current of
each bias is monitored and reported. The capacitive load for each bias should be kept below 0.1 uF to
guarantee amplifier stability.

There are optoisolators between each bias and the output connector. Initially, the optoisolators are
open, and the pin on the output is connected to ground through a 1M resistor. When the system is
commanded to enable power to the CCD, all biases are set to 0 V. The biases are checked, and then the
optoisolators are closed. Next, each bias is set to its operating level in a user programmable sequence.
At each step, the bias levels are checked before proceeding to the next step. The power down sequence
proceeds in the reverse order.

The system supplies are continuously monitored in hardware by comparators. In the event a system
supply leaves its normal operating range, all optoisolators to the CCD are opened.

The XV bias module requires the P17V, N17V, P100V and N100V system supplies. This requires the use
of an XV power supply and XV chassis. The XV bias module pinout is shown in Figure 22.

For firmware versions after 1090, commands to change a bias can be given by the timing core. Bias
changes commanded this way are ignored until the system has been configured and all biases have
powered on. One bias command can be given per master clock cycle to a P and/or N channel. It takes
about 10 ms for a channel to settle to a new value. If too many bias commands are given too quickly,
some will be ignored. Biases commanded this way are not as accurate as no corrections are performed.
The output bias value will typically be within +/- 50 mV of the commanded value.

J1
ERF8-013-01-L-D-RA-TR

NV4 12 NV3
1 24)
5 6
NV2 v G NV1
T 9 10 r
112
PV4 I & PV3
' 15 16 r
17 18
PV2 L0 PV1
' 21 22 r
23 24
%5 26
GND GND

Figure 22: XVBias Module Connector

XVBias Module 33

HS (High Speed) Module

The high speed module outputs 12 high speed LVDS clocks with 1 ns timing resolution. The module also
provides clock magnitudes adjustable from 5V to 14V with about 1 mV of resolution and capable of
sourcing 1A. There are also clock offset voltages adjustable from -14 to +14V with about 1 mV of
resolution and capable of sourcing/sinking 10 mA. The currents and voltages of each magnitude and
offset are monitored. Together, each channel is intended to drive an LVDS receiver followed by a high
speed clock buffer (such as an EL7457) that’s AC-coupled to a CCD clock line. The clock buffer is
powered by the channel magnitude. The CCD clock line is tied to the channel offset through a parallel
diode and resistor. The diode direction is chosen based on whether the clock is normally high or low.
The magnitude and offset are enabled and disabled at step 1 of the power sequence.

The module also has 4 general purpose digital /0 lines, along with a digital power line. Each I/O line can
be configured as an input or output. The digital power line (DPWR) can either be driven externally by a
1.65 V to 5.5 V supply, or connected to an internal 3.3 V supply. Current draw from the internal power
supply by external devices should be limited to 100 mA. By default, the DPWR line is set to be driven
externally, and all I/O lines are configured as inputs. A user-programmable 16-bit 100 MHz CPU is
available for simple digital I/O communication tasks. See the VCPU section for details.

The high speed module requires the P17V and N17V system supplies. The high speed module pinout is
shown in Figure 23.

HS (High Speed) Module 34

J2
ERF8-040-01-L-D-RA-TR

o I Y
5 6

MAGL2 JO CLK P12

OFS12 11 12 CLK_N12

pcu 55 15 e
17 18

MAG10 ;? gg CLK P10

OFS10 23 24 CLK _N10

MAG9 %g %g CLK P9

OFS9 29 30 CLK N9

e s 5 o
35 36

s 1 s
41 42

i i ar
47 48

o s
53 54

- 7 5 ——
59 60

5 o o
65 66

6 1 o
71 72

e s T o
77 78
79 80

GND GND

Figure 23: High Speed Module Connector

HS (High Speed) Module

35

LVDS Module

The LVDS module outputs 16 LVDS clocks with 10 ns timing resolution. The module also provides +3.3V,
+/-5V, and +/-16V supplies (maximum current 1A each). The supplies are enabled and disabled at step 1
of the power sequence.

The module also has 4 general purpose digital I/0 lines, along with a digital power line. Each I/O line can
be configured as an input or output. The digital power line (DPWR) can either be driven externally by a
1.65 V to 5.5 V supply, or connected to an internal 3.3 V supply. Current draw from the internal power
supply by external devices should be limited to 100 mA. By default, the DPWR line is set to be driven
externally, and all I/O lines are configured as inputs. A user-programmable 16-bit 100 MHz CPU is
available for simple digital I/O communication tasks. See the VCPU section for details.

The LVDS module requires the P6V, N6V, P17V and N17V system supplies. The LVDS module pinout is
shown in Figure 24.

J1
ERF8-040-01-L-D-RA-TR

12
P16V_CCD} 3 4 |P16V_CCD
5 6
N16V_CCD} 7 8 IN16V_CCD
9 10
P5V_CCD} 1 12 |P5V_CCD
13 14
N5Vv_ccD} 15 16 {N5V_CCD
17 18
P3v3_ccD} 19 20 |P3Vv3_cCD
CH P16 oz CH P8
CH _N16 B T CH N8
CH_P15 % gg CH_P7
CH_N15 3 2 CH_N7
CH P14 gg g‘é CH_P6
CH_N14 37 38 CH_N6
CH P13 o CH P5
CH Ni3 m o CH N5
CH P12 el CH P4
CH N1i2 o &5 CH N4
CH P11 %o CH P3
CH Ni1 B & CH N3
CH_P10 g; Zg CH_P2
CH_N10 o1 62 CH_N2
CH P9 gg g’g CH Pl
CH_N9 &7 o8 CH N1
69 70
—_— 71 72—

]
DIO2 L bioa _ 1PPWR
DIOL o DIO3
79 80
GND GND

Figure 24 : LVDS Module Connector

LVDS Module 36

Heater Module

The heater module can drive two resistive heater elements (typically up to 25V at 1A each), and reads
two temperature sensors. Power for the heater elements is drawn from the HEATER system supply,
which should be a minimum of 2V higher than the maximum desired output voltage, but no greater than
36V.

The temperature sensing circuitry consists of two precision 10 uA current sources and two ADCs with
high impedance instrumentation amplifier inputs. These are intended to be used with standard
temperature sensing diodes such as the Lakeshore DT-670 with a four wire interface. The force lines
(TEMPxF_P and TEMPxF_N) and sense lines (TEMPxS_P and TEMPxS_N) should be connected to the
temperature sensor with shielded twisted pair. The positive lines (x_P) should be connected to the
temperature sensor anode, and the negative lines (x_N) to the cathode. Interfacing with RTDs or other
sensor types can be accommodated by customizing the gain and current source resistors on the heater
module, and updating the firmware with the appropriate temperature curves. Each heater output can
be forced to a constant voltage, or a target temperature can be set with a PID loop controlling the
heater output. The heater output can be limited to a specified voltage to limit the output power. Upper
and lower limits for valid sensor readings can be set. The heater output is disabled if these limits are
exceeded.

Each heater PID loop is configured by setting P, |, D, and | Limit terms, and specifying which temperature
sensor to close the loop around. A target temperature is given. A PID loop update time is also defined.
Internally, the PID loop calculates an error signal by subtracting the current temperature from the target
temperature. Once per update loop, the P term is multiplied by the current error, the | term is
multiplied by a running sum of the errors (limited to | Limit), and the D term is multiplied by the
difference between this error and the last. The sum of these results is then translated into a linear
power output to the heater. The loop update time should be set to a timescale comparable to how long
it takes the system to show a response to an input. If ramping is enabled for a heater, the PID loop
target begins at the current temperature, and linearly ramps to the final target temperature at the
configured rate.

The module also has 8 general purpose digital 1/0 lines, along with a digital power line. Each pair of I/O
lines can be configured as inputs or outputs. The digital power line (DPWR) can either be driven
externally by a 1.65 V to 5.5 V supply, or connected to an internal 3.3 V supply. Current draw from the
internal power supply by external devices should be limited to 100 mA. By default, the DPWR line is set
to be driven externally, and all I/O lines are configured as inputs. A user-programmable 16-bit 100 MHz
CPU is available for simple digital I/O communication tasks. See the VCPU section for details.

The heater module requires the P17V and HEATER system supplies. The heater module pinout is shown
in Figure 25.

Heater Module 37

ERF8-030-01-L-D-RA-TR

o4 DIO8
DIO7
02 DIO6
DIOS

——— 9 10 ——————|DPWR

0101010
w
N

HEATERA P_| HEATERA P

HEATER_N}—

|{HEATER_N

i
T

TEMPAF P] TEMPAS N
TEMPAE N TEMPAS P

TEMPBF P__| TEMPBS N
TEMPBF N TEMPBS P

HEATER_N }—

49 50 1 |{HEATER_N

HEATERB_P_| HEATERB P

il

Figure 25: Heater Module Connector

Heater Module

38

HeaterX Module

The HeaterX module (an upgrade of the standard Heater module) can drive two resistive heater
elements (typically up to 25V at 1A each), and reads three temperature sensors. Power for the heater
elements is drawn from the HEATER system supply, which should be a minimum of 2V higher than the
maximum desired output voltage, but no greater than 36V.

The temperature sensing circuitry consists of three precision current sources programmable from 25 nA
to 1.5 mA in 25 nA steps, and three ADCs with high impedance inputs. They are intended to be used
with standard temperature sensing diodes such as the Lakeshore DT-670 with a four wire interface, or
with standard 100 or 1000 Ohm RTDs. The force lines (TEMPxF_P and TEMPxF_N) and sense lines
(TEMPxS_P and TEMPxS_N) should be connected to the temperature sensor with shielded twisted pair.
The positive lines (x_P) should be connected to the temperature sensor anode, and the negative lines
(x_N) to the cathode. Interfacing with other sensor types can be accommodated by updating the
firmware with the appropriate temperature curves. Each heater output can be forced to a constant
voltage, or a target temperature can be set with a PID loop controlling the heater output. The heater
output can be limited to a specified voltage to limit the output power. Upper and lower limits for valid
sensor readings can be set. The heater output is disabled if these limits are exceeded.

Each heater PID loop is configured by setting P, I, D, and | Limit terms, and specifying which temperature
sensor to close the loop around. A target temperature is given. A PID loop update time is also defined.
Internally, the PID loop calculates an error signal by subtracting the current temperature from the target
temperature. Once per update loop, the P term is multiplied by the current error, the | term is
multiplied by a running sum of the errors (limited to | Limit), and the D term is multiplied by the
difference between this error and the last. The sum of these results is then translated into a linear
power output to the heater. The loop update time should be set to a timescale comparable to how long
it takes the system to show a response to an input. If ramping is enabled for a heater, the PID loop
target begins at the current temperature, and linearly ramps to the final target temperature at the
configured rate.

The module also has 8 general purpose digital I/0 lines, along with a digital power line. Each pair of I/0
lines can be configured as inputs or outputs. The digital power line (DPWR) can either be driven
externally by a 1.65 V to 5.5 V supply, or connected to an internal 3.3 V supply. Current draw from the
internal power supply by external devices should be limited to 100 mA. By default, the DPWR line is set
to be driven externally, and all I/O lines are configured as inputs. A user-programmable 16-bit 100 MHz
CPU is available for simple digital I/O communication tasks. See the VCPU section for details.

The HeaterX module requires the P17V, N6V and HEATER system supplies. The heater module pinout is
shown in Figure 26.

HeaterX Module 39

J2
ERF8-030-01-L-D-RA-TR

DI04 L DIO8
DIO3 : 2 DIO7
DIO2 > o DIOG
DIOL >0 DIOS
— 9 10— {DPWR
—— 11 12
NSVI——: 13 14 P15V
15 16 —
TEmPCE P o TEMPCS N
TEMPCF N | 21 22 TEMPCS P
! 23 24
w_: 25 26 HEATERA P
27 28 —1
¢ 20 3
HEATER_NI——: 31 32 JHEATER_N
33 34 — 1
TEMPAF P > ® TEMPAS N
TEMPAF N__| 39 40 TEMPAS P
TEMPBE_P 5 TEMPBS N
TEMPBE N s TEMPBS P
—— 47 48 .
HEATER N|— 49 50 HEATER_N
- _: 51 52 _T ! -
! 53 54
w_: 55 56 HEATERB P
57 58 —1
59 60
GND GND

Figure 26: HeaterX Module Connector

HeaterX Module

System Power
Power is supplied to a standard Archon system through a Souriau 28-pin UT002028PH circular connector

(Figure 27).

Pin
ACTV
B,D,U, W

‘-n \m
I o

(DQ_OQJN-<><U’D'W'UZ§'_7<‘—

Figure 27: Power Connector

Voltage

+2.5 V Digital

+2.5 V Digital Return

+5 V Digital

+5 V Digital Return

+6 V Analog

+6 V /-6 V Analog Return
-6 V Analog

+17 V Analog

+17V /-17 V Analog Return
-17 V Analog

+35V Analog

435V /-35V Analog Return
-35V Analog

Heater

Heater Return

User

User Return

Fan (+12 V)

Fan Return

Earth ground

System Power

Power Good Range
+2.1V..+29V

+4.4V..+56V

+55V..+6.6V

-53V..-66V
+16.4V..+17.5V

-16.6V ...-17.7V
+343V..+36.0V

-33.8V..-35.9V
+18.0V..+36.0V

+18.0V..+36.0V

Directly connected to fan

41

The XV power supply and XV chassis use a modified pinout, shown below.

Pin
ACTV
B,D,U W
E,G

o
T

rDQ_ﬁmN-<><mC';U'UZ§'_7<'—

Voltage

+2.5 V Digital

+2.5 V Digital Return

+5 V Digital

+5 V Digital Return

+6 V Analog

+6 V /-6 V Analog Return
-6 V Analog

+17 V Analog

+17V /-17 V Analog Return
-17 V Analog

+35V Analog

+35V /-35V Analog Return
-100 V Analog

Heater

Heater Return

+100 V Analog

+100 V / -100V Analog Return
Fan (+12 V)

Fan Return

Earth ground

Power Good Range

+2.1V..+29V
+4.4V .. +5.6V
+55V..+6.6V
-53V..-66V

+16.4V .. +17.5V

-16.6V..-17.7V
+343V..+36.0V

-97V..-103V
+18.0V .. +36.0V

+97V ... +103V

Directly connected to fan

The Archon AC chassis only requires a standard IEC AC power cable, and 110/220V AC power.

Only the voltages used by the installed modules need be supplied. The backplane always requires the

+2.5V and +5 V digital supplies. Power from the circular connector is routed to a power board. This

board monitors the system supply voltages. When all supply voltages are at their nominal levels, the

power is connected to the rest of the system through solid state relays. The allowed nominal levels are

set by resistors on the power board, and the default power good ranges are shown in the power cable
pinout. Switches must be set on P1 and P7 on the power board to indicate which supply voltages are
being used in the system. The power good connector pinout is shown in Figure 28. Set the respective

switches to ON to indicate a supply is in use and should be monitored.

DGOOD

AGOOD

P1

97C10ST

L, P2V5GOOD_IN P2V5GOOD_OUT L
s _— 4 P5VGOOD IN P5VGOOD OUT s _—
s % P6VGOOD IN P6VGOOD OUT s
s "4 6VGOOD IN 6VGOOD OUT >
s — 1 P17VGOOD IN P17VGOOD OUT o ——
h_—— 1 17VGOOD_IN 17VGOOD_OUT u_—— 1
3 _—_ 14 P35VGOOD IN P35VGOOD OUT B _—— 14
B 1% 35VGOOD_IN 35VGOOD_OUT e _—_1e
b USERGOOD IN USERGOOD OUT o __— 1
6 _—— 2% HEATERGOOD_IN HEATERGOOD OUT o — %

97C10ST

Figure 28: Power Monitor Switches

System Power

PWRGOOD

42

The XV chassis has a modified set of switches, as shown in Figure 29.

P1

p7

E— el ——2 S FEvenon DU | === 7 PRREOCD
AGOOD £ = & P6VGOOD N P6VGOOD OUT, g = 4

5 —— ¢ N6VGOOD IN N6VGOOD OUT 5 —— ¢

T ——— 8 P17VGOOD IN P17VGOOD OUT T ——— 8

o ——10 NL7VGOOD IN NL7VGOOD OUT 9 ———10

1N — — 12 —————— 11— —12

N [P3VGOOD N P35VGOOD OUT n_—_— =

B M [N100vGOOD IN N100VGOOD OUT v

1 [Pl00vGOOD N PL00VGOOD OUT L

N [HEATERGOOD_IN HEATERGOOD OUT nw_—5

97C10ST 97C10ST

Figure 29: XV Power Monitor Switches

In addition, all of the system supply voltages and currents are monitored and digitized. These values are
retrieved by the backplane over a cable connected to P9. This connector also carries the system-wide
Power Good signal.

The standard Archon power supply is shown in Figure 30. It uses low noise switching supplies to
generate +2.5V, +5V, +6V, -6V, +17V, -17V, and +35V voltages, along with +12V fan and +28V heater
voltages. It accepts 100-240VAC at 50/60Hz, and is typically 61% efficient. Its dimensions are 8” x 6” x
4.5” (20.32cm x 15.24cm x 11.43cm), and it weighs 4.5 pounds (2.1 kg). The XV power supply has the
same dimensions, but adds +100V and -100V voltages. The Archon AC chassis needs no external power
supply, and can optionally have +/-100V supplies installed.

Figure 30: Archon Power Supply

System Power 43

Power Consumption

The following table lists the approximate current required from the system supplies for various

configurations. These currents do not include any loads external to the controller (current supplied to
CCD output FETs, current required to clock capacitve loads, heater current, etc). Enabled biases are set
to 50% of their maximum values, and clocks are set to OV. The typical systems contain 1 LVBias module,

1 HVBias module, 3 Driver modules, 1 Heater module, and either 1 or 4 AD modules.

Configuration +2.5V (A) +5V (A) +/-6V (A) +/-17V (A) | +35V (A)
Backplane alone 2.2 0.8

LVBias, no HC enabled 2.2 1 0.05

LVBias, all HC enabled 2.2 1 0.1

HVBias, no HC enabled 2.2 1 0.02 0.03 0.04
HVBias, all HC enabled 2.2 1 0.06 0.03 0.09
Driver, no channels 2.2 1

Driver, all channels 2.2 1.1 0.06 0.09

AD, no channels 2.2 1.1 0.03

AD, all channels 3 1.1 0.12

Heater 2.2 1

Typical 4 channel 35 2.6 0.33 0.36 0.09
Typical 16 channel 6.3 34 0.7 0.39 0.09

The total typical DC power required for the 4 channel system is 41 W. The 16 channel system requires
58 W. The AC power consumption at the wall is the listed power divided by the efficiency of the Archon
power supply (~61%). A typical 16 channel Archon AC chassis draws 89W at the wall in full operation.

System Power

44

Communication

All communication between the host system and the Archon controller is over the gigabit Ethernet
interface. By default, the controller listens for a TCP/IP connection at address 10.0.0.2 on port 4242 (the
host is usually set to 10.0.0.1). To change the IP address, connect to Archon using the GUI. Set the new,
desired IP address at the bottom left of the System tab and click “Apply Network Configuration” (there
will be error messages because Archon is no longer responding on the old address). Click Disconnect,
change the Archon IP address at the top left to the new address, and click Connect. Select System-
>Flash Active Config to make this change permanent.

The controller only responds to commands, it never initiates a message. Commands to the controller
are of the form:

>XXCOMMAND

The command begins with a greater-than symbol, followed by a two hexadecimal digit reference
number, followed by the command itself, and terminated with a newline (\n / ASCII 10 / Ox0A).

Unrecognized commands are ignored. In the event of an error parsing or executing a command, the
response from the controller will be:

?XX

The initial ‘?’ indicates an error occurred processing the command. The two hexadecimal digit reference
number matching what was sent with the command follows. The response is terminated with a
newline.

On success, the controller will respond:

<XXRESPONSE

The initial ‘<’ indicates success. The two hexadecimal digit reference number matching what was sent
with the command follows. The text of the response (if any) is next, and the response is terminated
with a newline.

To conserve bandwidth, certain commands request the return of raw binary data (such as fetching the
contents of a frame buffer). In these cases, the response takes the following form:

<XX:bbbbb...bbbbb

The initial ‘<’ indicates success. The two hexadecimal digit reference number matching what was sent
with the command follows. The “:’ indicates a binary response. The remainder of the response is 1024
bytes of raw binary data, with no terminating newline.

The list of controller commands follows.

Communication 45

SYSTEM

Reports the system configuration (installed modules, firmware versions, etc). The response is a

sequence of KEY=VALUE pairs separated by spaces and terminated with a newline. The list of keys

returned follows.

BACKPLANE_TYPE=n
BACKPLANE_REV=n
BACKPLANE_VERSION=n.n.n
BACKPLANE_ID=x
MOD_PRESENT=x

MODNn_TYPE=n

MODn_REV=n
MODn_VERSION=n.n.n
MODn_ID=x

)

; h =1 for an X12 backplane, n = 2 for X16

Backplane PCB revision, @ = A, 1 = B..
Backplane firmware, major.minor.build

16 hexadecimal digit backplane unique ID
Hexadecimal bit field: a 1 in the LSB
indicates a module is present in slot 1
Reports module type for slots 1..n.

@: None

1: Driver
2: AD

3: LVBias
4: HVBias
5: Heater
7: HS

8: HVXBias
9: LVXBias
10: LVDS
11: HeaterX
12: XVBias
13: ADF
14: ADX
15: ADLN

16+: Unknown

Module m PCB revision, @ = A, 1 = B..
Module m firmware, major.minor.build

16 hexadecimal digit module m unique ID

Communication

46

STATUS

Reports the system status. The response is a sequence of KEY=VALUE pairs separated by spaces and
terminated with a newline. The list of keys returned follows.

VALID=n ; =1 if remaining status fields are valid
COUNT=n ; Number of times system status has been
; updated
LOG=n ; Number of log entries available
POWER=nN ; Power status. Possible values:

; ©: Unknown - usually an internal error
Not Configured - no configuration applied
: Off - power to the CCD is off
Intermediate - some modules have enabled
; power to the CCD, some have not
4: On - Power to the CCD is on
; 5: Standby - System is in standby
n

-
wN =

POWERGOOD=n ; = 1 when system power supply is good
OVERHEAT=n ; n =1 when system is overheating
BACKPLANE_TEMP=F ; Floating point backplane temperature in C
P2V5_V=Ff ; +2.5V system supply voltage in V
P2V5_I=f ; +2.5V system supply current in A
P5V_V=Ff ; +5V system supply voltage in V
P5V_I=f ; +5V system supply current in A
P6V_V=Ff ; +6V system supply voltage in V
PeV_I=f ; +6V system supply current in A
N6V_V=Ff ; -6V system supply voltage in V
N6V _I=f ; -6V system supply current in A
P17V_V=Ff ; +17V system supply voltage in V
P17V_I=Ff ; +17V system supply current in A
N17V_V=f ; -17V system supply voltage in V
N17V_I=F ; -17V system supply current in A
P35V _V=Ff ; +35V system supply voltage in V
P35V_I=f ; +35V system supply current in A
N35V_V=Ff ; -35V system supply voltage in V
N35V_I=Ff ; -35V system supply current in A
P1eevV_V=Ff ; +100V system supply voltage in V
PloeVv_I=f ; +100V system supply current in A
N1eev_V=f ; -100V system supply voltage in V
N1eev_I=f ; -100V system supply current in A
USER_V=Ff ; User system supply voltage in V
USER_I=F ; User system supply current in A
HEATER_V=f ; Heater system supply voltage in V
HEATER I=Ff ; Heater system supply current in A
FANTACH=n ; Fan speed in RPM (Rev F only)

Communication 47

MODm/TEMP=F
MODm/LVLC_Vn=Ff

MODm/LVLC_In=Ff

MODm/LVHC_Vn=Ff

MODm/LVHC_In=Ff

MODm/HVLC_Vn=Ff

MODm/HVLC_In=Ff

MODm/HVHC_Vn=*f

MODm/HVHC_In=*f

MODm/TEMPA=f
MODm/TEMPB=*
MODm/TEMPC=f
MODm/HEATERAOUTPUT=F
MODm/HEATERBOUTPUT=F
MODm/HEATERAP=d
MODm/HEATERAI=d
MODm/HEATERAD=d
MODm/HEATERBP=d
MODm/HEATERBI=d

MODm/HEATERBD=d

Floating point module m temperature in C
LV(X)Bias only: Floating point module m low

; voltage low current n voltage reading in V
; h =1 to 24 maps to LV1 to LV24

LV(X)Bias only: Floating point module m low

; voltage low current n current reading in mA
; h =1 to 24 maps to LV1 to LV24

LV(X)Bias only: Floating point module m low

; voltage high current n voltage reading in V
; h =1 to 6 maps to LV25 to LV30

LV(X)Bias only: Floating point module m low

; voltage high current n current reading in mA
; h =1 to 6 maps to LV25 to LV30

; HV(X)Bias only: Floating point module m high
; voltage low current n voltage reading in V

; h =1 to 24 maps to HV1 to HV24

; HV(X)Bias only: Floating point module m high
; voltage low current n current reading in mA
; h =1 to 24 maps to HV1 to HvV24

; HV(X)Bias only: Floating point module m high
; voltage high current n voltage reading in V
; h =1 to 6 maps to HV25 to HV30

; HV(X)Bias only: Floating point module m high
; voltage high current n current reading in mA
; h =1 to 6 maps to HV25 to HV30

; Heater(X) only: Floating point temperature

sensor A reading in K

; Heater(X) only: Floating point temperature

sensor B reading in K

; HeaterX only: Floating point temperature

sensor C reading in K

; Heater only: Floating point heater A

; output in V

; Heater only: Floating point heater B

; output in V

; Heater only: Heater A P term contribution
; to PID loop (signed integer)

; Heater only: Heater A I term contribution
; to PID loop (signed integer)

; Heater only: Heater A D term contribution
; to PID loop (signed integer)

; Heater only: Heater B P term contribution
; to PID loop (signed integer)

; Heater only: Heater B I term contribution
; to PID loop (signed integer)

; Heater only: Heater B D term contribution
; to PID loop (signed integer)

Communication 48

MODm/DINPUTS=bbbbbbbb
MODm/MAG_Vn=F
MODm/MAG_In=F
MODm/OFS_Vn=F
MODm/OFS_In=F
MODm/DINPUTS=bbbb

MODm/VCPU_OUTREGn=d

TIMER

LV(X)Bias and Heater(X): reports the status
or 1=high)

; of DIO1 to DIO8 (each is @=low
; HS only: Floating point
; voltage reading in V

; HS only: Floating point
; current reading in mA

; HS only: Floating point
; voltage reading in V

; HS only: Floating point
; current reading in mA

; HS and LVDS: reports the status of

; DIO1 to DIO4 (each is ©=low or 1=high)

; Modules with DIO: VCPU output register n

module

module

module

module

(unsigned 16-bit integer)

m

m

m

m

magnitude n
magnitude n
offset n

offset n

Reports the internal 64-bit timer/counter. One tick of the counter is 10 ns. Use this command as a

reference for synchronizing the frame buffer timestamps to universal time on the host. In testingon a
Win XP machine with a dedicated network link to Archon, the delta between the fetched Archon timer
to the host computer timer had a standard deviation of 5.7us with a worst case of +/- 20us.

TIMER=x

Communication

; Current hexadecimal 64-bit internal timer

49

FRAME

Reports the frame buffer status. The response is a sequence of KEY=VALUE pairs separated by spaces
and terminated with a newline. The buffer numberis 1 to 3. The list of keys returned follows.

TIMER=x ; Current hexadecimal 64-bit internal timer

RBUF=d ; Current buffer number locked for reading

WBUF=d ; Current buffer number locked for writing

BUFNnSAMPLE=d ; Buffer n sample mode, 0: 16 bit, 1: 32 bit

BUFNCOMPLETE=d ; Buffer n complete, 1: buffer ready to read

BUFnMODE=d ; Buffer n mode, ©: top, 1: bottom, 2: split

BUFnBASE=d ; Buffer n base address for fetching

BUFnFRAME=d ; Buffer n frame number

BUFNWIDTH=d ; Buffer n width

BUFNHEIGHT=d ; Buffer n height

BUFNPIXELS=d ; Buffer n pixel progress

BUFnLINES=d ; Buffer n line progress

BUFnRAWBLOCKS=d ; Buffer n raw blocks per line

BUFNRAWLINES=d ; Buffer n raw lines

BUFNRAWOFFSET=d ; Buffer n raw offset

BUFNTIMESTAMP=x ; Buffer n hexadecimal 64-bit time stamp

BUFNRETIMESTAMP=x ; Buffer n trigger rising edge time stamp

BUFNFETIMESTAMP=x ; Buffer n trigger falling edge time stamp

BUFNREATIMESTAMP=x ; Buffer n trigger A rising edge time stamp

BUFNFEATIMESTAMP=x ; Buffer n trigger A falling edge time stamp

BUFNREBTIMESTAMP=x ; Buffer n trigger B rising edge time stamp

BUFNFEBTIMESTAMP=x ; Buffer n trigger B falling edge time stamp
FETCHLOG

Fetches the oldest log entry.

LOCKn

Locks frame buffer n for reading, where nis 1 to 3. Use n =0 to unlock all buffers.

VERIFYMODxxyyyyzzzz

Verifies (reads) the firmware of module xx (hex, 00 = module 1), starting at block address yyyy (hex), and
reading zzzz (hex) blocks. The controller replies with one binary response per requested block. Each
block is 1024 bytes.

ERASEMODxx

Erases the firmware of module xx (hex, 00 = module 1).

FLASHMODxxyyyyzzz...ZZz
Flashes a 1024 byte block of the firmware of module xx (hex, 00 = module 1), starting at block address
yyyy (hex), using the 1024 hexadecimal bytes zzz...zzz.

ERASEXXXXXXXXYYyYyyyy

Erases yyyyyyyy (hex) bytes of the backplane firmware starting at address xxxxxxxx (hex).

Communication 50

FLASHxxxXyyy...yyy
Flashes a 1024 byte block of the backplane firmware, starting at block address xxxx (hex), using the 1024
hexadecimal bytes yyy...yyy.

VERIFYxxxxyyyy
Verifies (reads) the backplane firmware, starting at block address xxxx (hex), and reading yyyy (hex)
blocks. The controller replies with one binary response per requested block. Each block is 1024 bytes.

REBOOT
Reboots the backplane, which forces the backplane and all modules to reset and reread all FPGA
firmware from the configuration memories. This will cause the network connection to drop.

WARMBOOT

Forces the backplane processor to restart, without causing the backplane or module FPGAs to reload
their firmware. This will cause the network connection to drop.

FET CHXXXXXXXXYyyyyyyy

Fetches (reads) yyyyyyyy (hex) 1024 byte blocks of the backplane RAM starting at address Xxxxxxxx
(hex). The controller replies with one binary response per requested block. This is usually used to read
the frame buffer contents.

WCONFIGxxxxttt...ttt
Write the text ttt...ttt to configuration line xxxx (hex). The maximum number of configuration lines is
16384, and the maximum configuration line length is 2048 characters.

RCONFIGxxxx
Reads the configuration line xxxx (hex).

CLEARCONFIG
Clears the configuration memory.

APPLYALL
Parses and applies the complete system configuration from the configuration memory to the system
(excluding network configuration data). Power to the CCD will be off after this operation.

POWERON
Turns power on to the CCD. An APPLYALL is required before this operation.

POWEROFF
Turns power to the CCD off.

LOADTIMING
Parses and compiles the timing script and parameters contained in the configuration memory, and
applies them to the system. This resets the timing cores.

Communication 51

LOADPARAMS

Parses the timing parameters contained in the configuration memory, and applies them to the system.
This does not reset the timing cores. Note: the parameters are updated system-wide one at a time,
starting with the first in the parameter list.

LOADPARAM p
Parses the timing parameters contained in the configuration memory, and applies the parameter named

o n

p” to the system. This does not reset the timing cores.

PREPPARAM p

Parses the timing parameters contained in the configuration memory, and prepares the parameter
named “p” to be applied to the system. The new parameter value is loaded when the EXTLOAD signal
goes high. This command is intended for use when synchronizing multiple systems. This does not reset
the timing cores.

FASTLOADPARAM p d

Immediately loads the parameter named “p” with the value “d”, where d is from 0 to 1000000. This
does not reset the timing cores. The configuration memory is unchanged, and is not parsed. A

o . n

configuration defining the parameter “p” must have already been loaded and applied.

FASTPREPPARAM p d

Immediately prepares the parameter named “p” to be loaded with the value “d”, where d is from 0 to
1000000. The new parameter value is loaded when the EXTLOAD signal goes high. This command is
intended for use when synchronizing multiple systems. This does not reset the timing cores. The

configuration memory is unchanged, and is not parsed. A configuration defining the parameter “p
must have already been loaded and applied.

RESETTIMING
Resets the timing cores. This has the effect of starting all timing cores from the first line of the timing
script.

HOLDTIMING

Holds all timing cores in reset until released. Timing core outputs will have the values of the first state in
the timing script. Release the timing cores from reset (and begin the timing script) using
“RELEASETIMING”.

RELEASETIMING
Releases the timing cores from reset if they had been held there by the “HOLDTIMING” command.

APPLYMODxx

Parses and applies the configuration for module xx (hex, 00 = module 1) from the configuration memory.

Communication 52

APPLYDIOxx

Parses and applies the DIO and VCPU configuration for module xx (hex, 00 = module 1) from the
configuration memory.

APPLYSYSTEM

Parses and applies the backplane-specific system settings (mostly trigger control) from the configuration
memory to the system.

APPLYCDS

Parses and applies the deinterlacing and CDS settings from the configuration memory to the system.

FLASHACTIVECONFIG

Store the current configuration into nonvolatile flash memory

ERASESTOREDCONFIG

Erase the configuration data stored in nonvolatile flash memory

APPLYNET

Begin using the IP and port in the current configuration for communication

Communication 53

Configuration

All of the configuration information for the Archon controller is described by a text file of KEY=VALUE
pairs. The configuration is typically stored as a text file on the host system and written to Archon over
the network interface. The configuration will usually be modified by a program on the host system
based on user input (e.g. to set the integration time). The configuration is stored as text in a dedicated,
volatile configuration memory in Archon. This memory accommodates 16384 configuration lines, which
can each be 2048 characters long. At startup, the configuration memory is typically first cleared by the
host program using the CLEARCONFIG command, and then filled with the desired configuration using
the WCONFIG command. The host can also read back the configuration memory using the RCONFIG
command. Once a complete configuration is written, an APPLYALL command will instruct Archon to
parse the configuration and apply it to the system. A snippet of a potential communication is shown
below:

HOST : >@1CLEARCONFIG

ARCHON: <01
HOST : >02WCONFIGOOOOLINES=99
ARCHON: <@2
HOST : >03WCONFIGOOO1STATES=7
ARCHON: <@3

HOST : >04RCONFIGO001
ARCHON: <O4STATES=7

There is also a section of nonvolatile flash memory dedicated for permanently storing a configuration.
The active configuration can be written to this flash storage using the FLASHACTIVECONFIG command,
and the flash storage can be cleared using the ERASESTOREDCONFIG command. The configuration
stored in the flash memory is copied to the active configuration on power-up (but is not applied). In
particular, this stored configuration is used to configure the controller’s IP and port number at power

up.
The list of configuration keys follows.

IP

IP address for controller communication. Default is 10.0.0.2. This setting is only applied during power
up when read from the nonvolatile flash configuration memory, or after receiving the APPLYNET
command.

PORT

Port number for controller communication. Default is 4242. This setting is only applied during power up
when read from the nonvolatile flash configuration memory, or after receiving the APPLYNET command.

LINECOUNT
Number of lines per tap, from 1 to 65535.

Configuration 54

LINES

Number of lines in the timing script, from 0 to 2048.

LINEn

Text for timing script line n, where n is from 0 to 2047.

STATES
Number of timing states, from 0 to 2047.

STATEn/NAME

Assign a name to state n, where n is from 0 to 2047.

STATEn/CONTROL

Set state n control clocks.

STATEn/MODi

Set state n clocks and keeps for module i.

PARAMETERS

Set the number of parameter definition lines, from 0 to 255.

PARAMETERnN
Text for parameter definition line n.

CONSTANTS
Set the number of constant definition lines, from 0 to 255.

CONSTANTnN
Text for constant definition line n.

SHP1
Set the start of the sample and hold period for the reset pedestal.

SHP2
Set the end of the sample and hold period for the reset pedestal.

SHD1
Set the start of the sample and hold period for the video data pedestal.

SHD2
Set the end of the sample and hold period for the video data pedestal.

BIGBUF

Enable (1) for 2x 768MB frame buffers, disable (0) for 3x 512MB frame buffers.

Configuration

55

RAWENABLE

Enable (1) or disable (0) raw data capture.

RAWSEL

Select the AD channel for raw data capture, from 0 to 15.

RAWSTARTLINE
Set the first line for which raw data will be captured, from 0 to 65535.

RAWENDLINE
Set the last line for which raw data will be captured, from 0 to 65535.

RAWSTARTPIXEL
Set the first pixel for which raw data will be captured, from 0 to 65535.

RAWSAMPLES

Set the number of raw samples per line to capture, from 0 to 65535.

SAMPLEMODE
Set the sample mode, where 0 is 16-bit and 1 is 32-bit.

PIXELCOUNT
Set the number of pixels captured per tap.

FRAMEMODE
Set the frame deinterlacing mode, where 0 is top first, 1 is bottom first, and 2 is split.

LINESCAN
Backplane Rev. E and later: Enable (1) or disable (0) line scan mode. [1.0.1028]

TAPLINES
Set the number of tap definition lines, from 0 to 63.

TAPLINEn
Text for tap definition line n.

TRIGOUTFORCE
Set to 1 to force the trigger out level to match the TRIGOUTLEVEL setting. Set to 0 to have the trigger
out level controlled by the INT control clock.

TRIGOUTLEVEL
The trigger out level is set to this value (0 or 1) when TRIGOUTFORCE is 1.

Configuration 56

TRIGOUTINVERT

The trigger out level is inverted when 1, or unchanged when 0. This always affects the trigger out level,
whether the trigger level is forced or derived from the INT control clock.

TRIGOUTPOWER

Backplane Rev. E and earlier only: Set to 1 to actively drive the trigger out line using an internal 3.3 V
power supply. Set to O for fully optoisolated operation. (Rev E and earlier)

TRIGINENABLE

The trigger in line is connected to the timing core reset when 1, or ignored when 0. The trigger in line is
always ignored if the system is synchronized to an external clock. [1.0.876]

TRIGININVERT

When TRIGININVERT is set to 0 and TRIGINENABLE is set to 1, the timing core is held in reset as long as
the trigger in line is high (>= 3.3V). When TRIGININVERT is set to 1 and TRIGINENABLE is set to 1, the
timing core is held in reset as long as the trigger in line is low (0V). [1.0.876]

EXTCLOCK

Backplane Rev. D and earlier only: Set to 1 to switch from an internal 25 MHz clock source to an
externally provided 25 MHz clock source (on the EXTCLK pins). When EXTCLOCK is 1, the timing core
RESET and LOAD signals are driven by EXTRESET and EXTLOAD, so that multiple controllers (with
identical timing scripts) may be synchronized.

FANDISABLE

Backplane Rev. F and later only: Set to 1 to disable the internal cooling fan, or set to 0 to enable the fan.
This can be used to eliminate fan vibration when the system is being water cooled.

WARNING: Disabling the fan without water cooling the system will probably cause the system to
overheat and shut down, potentially reducing its lifetime.

APPLYALL
Set to 1 to have the controller perform an “Apply All” using the configuration stored in the controller at
power up. [1.0.1054]

POWERON
Set to 1 to have the controller perform a “Power On” using the configuration stored in the controller at
power up. [1.0.1054]

MODm/LABELIi

Driver: Define a text label for clock channel i of module m, with i from 1 to 8.
DriverX: Define a text label for clock channel i of module m, with i from 1 to 12.

Configuration 57

MODm/FASTSLEWRATEI

Driver: Define the fast slew rate (floating, in V / us, from 0.001 to 1000.0) for clock channel i of module
m, with i from 1 to 8. This can use one of the defined constants.

DriverX: Define the fast slew rate (floating, in V / us, from 0.001 to 1000.0) for clock channel i of module
m, with i from 1 to 12. This can use one of the defined constants.

MODm/SLOWSLEWRATEi

Driver: Define the slow slew rate (floating, in V / us, from 0.001 to 1000.0) for clock channel i of module
m, with i from 1 to 8. This can use one of the defined constants.

DriverX: Define the slow slew rate (floating, in V / us, from 0.001 to 1000.0) for clock channel i of
module m, with i from 1 to 12. This can use one of the defined constants.

MODm/ENABLEI
Driver: Set to 1 to enable clock channel i (1..8) of module m, or 0 to power down and disable.
DriverX: Set to 1 to enable clock channeli (1..12) of module m, or 0 to power down and disable.

MODm/SOURCEIi

Driver: Set to desired timing core clock source (1..8) for clock channel i. By default, 1 maps to 1, 2 maps
to 2, etc. [1.0.1064]

DriverX: Set to desired timing core clock source (1..12) for clock channel i. By default, 1 mapsto 1, 2
maps to 2, etc.

MODm/CLAMPHIGH
ADC Rev C: Set the DC clamp level for the high/positive side of the preamp, from -2.500 V to +2.500 V.
This can use one of the defined constants.

MODm/CLAMPLOW
ADC Rev C: Set the DC clamp level for the low/negative side of the preamp, from -2.500 V to +2.500 V.
This can use one of the defined constants.

MODm/CLAMP1
ADC Rev D: Set the DC clamp level for the channel 1 preamp, from -2.500 V to +2.500 V. This can use
one of the defined constants.

MODm/CLAMP2
ADC Rev D: Set the DC clamp level for the channel 2 preamp, from -2.500 V to +2.500 V. This can use
one of the defined constants.

MODm/CLAMP3
ADC Rev D: Set the DC clamp level for the channel 3 preamp, from -2.500 V to +2.500 V. This can use
one of the defined constants.

Configuration 58

MODm/CLAMP4
ADC Rev D: Set the DC clamp level for the channel 4 preamp, from -2.500 V to +2.500 V. This can use
one of the defined constants.

MODm/PREAMPGAIN
ADC: Set to 0 to select the low preamp gain (4 V input range), and 1 for the high preamp gain (1.33 V
input range). This can use one of the defined constants.

MODm/LVLC_LABELIi
LVBias: Define a text label for LVLC channel i (i from 1 to 24).

MODm/LVHC_LABELIi
LVBias: Define a text label for LVHC channel i (i from 1 to 6).

MODm/LVLC_Vi
LVBias: Set the power on voltage (from -14.000 to +14.000) for LVLC channel i (i from 1 to 24).

MODm/LVLC_ORDERI
LVBias: Set the power on order (>= 0) for LVLC channel i (i from 1 to 24).

MODm/LVHC_Vi
LVBias: Set the power on voltage (from -14.000 to +14.000) for LVHC channel i (i from 1 to 6).

MODm/LVHC_ORDERI
LVBias: Set the power on order (>= 0) for LVHC channel i (i from 1 to 6).

MODm/LVHC_ENABLEi

LVBias: Set to 1 to enable LVHC channel i of module m, or 0 to power down and disable.

MODm/LVHC_ILi
LVBias: Set the current limit in mA (from 0 to 500) for LVHC channel i (i from 1 to 6).

MODm/HVLC_LABELIi
HVBias: Define a text label for HVLC channel i (i from 1 to 24).

MODm/HVHC_LABELi
HVBias: Define a text label for HVHC channel i (i from 1 to 6).

MODm/HVLC_Vi
HVBias: Set the power on voltage (from 0.000 to +31.000) for HVLC channel i (i from 1 to 24).

MODm/HVLC_ORDERI
HVBias: Set the power on order (>= 0) for HVLC channel i (i from 1 to 24).

Configuration

59

MODm/HVHC_Vi
HVBias: Set the power on voltage (from 0.000 to +31.000) for HVHC channel i (i from 1 to 6).

MODm/HVHC_ORDERI
HVBias: Set the power on order (>= 0) for HVHC channel i (i from 1 to 6).

MODm/HVHC_ENABLEi

HVBias: Set to 1 to enable HVHC channel i of module m, or 0 to power down and disable.

MODm/HVHC_ILi
HVBias: Set the current limit in mA (from 0 to 250) for HVHC channel i (i from 1 to 6).

MODm/HEATERXENABLE
Heater/HeaterX: Set to O to disable or 1 to enable the Heater x (x = A or B) output.

MODm/HEATERxFORCE

Heater/HeaterX: Set to 1 to force the Heater x (x = A or B) output to the HEATERXFORCELEVEL, O for
normal operation.

WARNING: Forcing the heater output on can cause overheating if the temperature isn’t monitored.

MODm/HEATERxFORCELEVEL
Heater/HeaterX: Voltage level for Heater x (x = A or B) output when HEATERXFORCE is 1, from 0.000 to
25.000.

MODm/HEATERXLIMIT
Heater/HeaterX: Maximum voltage level for Heater x (x = A or B) output in PID mode, from 0.000 to
25.000.

MODm/HEATERXTARGET
Heater/HeaterX: Set target temperature for Heater x (x = A or B) control loop in degrees C (from -150.0
to 50.0). [-250 to 50 for 1.0.1087]

MODm/HEATERXSENSOR
Heater/HeaterX: Select temperature sensor used to control Heater x (x = A or B) output (Ois A, 1is B, 2
is C; C only available on HeaterX modules).

MODm/HEATERXSENSORTYPE

Heater: Select temperature sensor x (x = A or B) type (0 is DT-670, 1 is DT-470, 2 is RTD100, 3 is RTD400).
Note that the RTD100 and RTD400 types require custom resistors to be installed on the Rev D Heater
modaules.

MODm/SENSORXTYPE
HeaterX: Select temperature sensor x (x = A, B or C) type (0 is DT-670, 1 is DT-470, 2 is RTD100, 3 is
RTD400, 4 is RTD1000, 5 is RTD2000). [1.0.758, 1.0.1061 for RTD2000]

Configuration 60

MODm/SENSORXCURRENT
HeaterX: Select temperature sensor x (x = A, B or C) current in nA. This is used only for RTDs, for the DT-
470/DT-670 this defaults to 10 uA. [1.0.758]

MODm/SENSORXLOWERLIMIT
Heater/HeaterX: Select temperature sensor x (x = A, B, or C; C only available on HeaterX modules) lower
limit in degrees C (from -150.0 to 50.0). [-250 to 50 for 1.0.1002]

MODm/SENSORxUPPERLIMIT
Heater/HeaterX: Select temperature sensor x (x = A, B, or C; C only available on HeaterX modules) upper
limit in degrees C (from -150.0 to 50.0). [-250 to 50 for 1.0.1002]

MODm/SENSORXFILTER
HeaterX: Enable digital filtering to average previous readings (from 0 to 8, where 0 is disabled, 1
averages the last 2 readings, up to 8 which averages the last 256 readings). [1.0.1054]

MODm/HEATERxP
Heater/HeaterX: Set P term for Heater x (x = A or B) control loop (from 0 to 10000).
HeaterX: Fractional P term support added (from 0.000 to 10000.000) [Backplane 1.0.1054]

MODm/HEATERXI
Heater/HeaterX: Set | term for Heater x (x = A or B) control loop (from 0 to 10000). [1.0.478]
HeaterX: Fractional | term support added (from 0.000 to 10000.000) [Backplane 1.0.1054]

MODm/HEATERKXIL
Heater/HeaterX: Set | limit term for Heater x (x = A or B) control loop (from 0 to 10000). [1.0.478]

MODm/HEATERxD
Heater/HeaterX: Set D term for Heater x (x = A or B) control loop (from 0 to 10000). [1.0.478]
HeaterX: Fractional D term support added (from 0.000 to 10000.000) [Backplane 1.0.1054]

MODm/HEATERUPDATETIME
Heater: Set update time for control loop (from 1 to 30000, in milliseconds). [1.0.478]

MODm/HEATERXRAMP
Heater/HeaterX: Set to O to disable Heater x (x = A or B) ramping, or 1 to enable ramping (the heater
target linearly ramps from the current temperature to the set point). [1.0.548]

MODm/HEATERXxRAMPRATE
Heater/HeaterX: Set ramp rate for Heater x (x = A or B), in mK / update time (from 1 to 32767). [1.0.548]

MODm/HEATERxLABEL
HeaterX: Define a text label for heater x (x = A or B). [1.0.758]

Configuration 61

MODm/SENSORxLABEL
HeaterX: Define a text label for sensor x (x = A, B or C). [1.0.758]

MODm/DIO_LABELI
LVBias/Heater/HeaterX: Define a text label for DIO line i (i from 1 to 8). [1.0.624]
HS/LVDS: Define a text label for DIO line i (i from 1 to 4). [1.0.695]

MODm/DIO_SOURCEi

LVBias/Heater/HeaterX: Select the signal source for DIO line i (i from 1 to 8), where O is low, 1 is high, 2
selects the timing core, and 3 selects the VCPU. [1.0.784]

HS/LVDS: Select the signal source for DIO line i (i from 1 to 4), where 0 is low, 1 is high, 2 selects the
timing core, and 3 selects the VCPU. [1.0.784]

MODm/DIO_DIRi

LVBias/Heater/HeaterX: Select the direction for DIO lines i (i = 12, 34, 56, or 78), using O for input, 1 for
output. [1.0.624]

HS/LVDS: Select the direction for DIO lines i (i = 1, 2, 3, 4), using O for input, 1 for output. [1.0.695]

MODm/DIO_POWER

LVBias/Heater/HeaterX /HS/LVDS: Set to O to use an external voltage to power the digital 1/0 line
buffers, or 1 to the internal +3.3V supply. The +3.3V supply is routed to the DPWR pin when enabled.
[1.0.624]

MODm/VCPU_LINES
LVBias/Heater/HeaterX /HS/LVDS: Set the number of VCPU program lines, from 0 to 511. [1.0.784]

MODm/VCPU_LINEi
LVBias/Heater/HeaterX /HS/LVDS: Text for VCPU program line i (i = 0-511). [1.0.784]

MODm/VCPU_INREGi
LVBias/Heater/HeaterX /HS/LVDS: Set VCPU input register i (i = 0-15), from 0 to 65535. [1.0.784]

MODm/HS_LABELi
HS: Define a text label for high speed LVDS channel i (i = 1-12). [1.0.695]

MODm/MAG_LABELIi
HS: Define a text label for high speed magnitude channel i (i = 1-12). [1.0.695]

MODm/HS_LABELi
HS: Define a text label for high speed offset channel i (i=1-12). [1.0.695]

MODm/MAG_Vi
HS: Set the clock magnitude (5.000 to 14.000) for high speed channel i (i from 1 to 12). [1.0.695]

Configuration 62

MODm/OFS_Vi
HS: Set the clock offset (-14.000 to 14.000) for high speed channel i (i from 1 to 12). [1.0.695]

MODm/LVDS_LABELIi
LVDS: Define a text label for LVDS channel i (i = 1-16). [1.0.741]

MODm/XVP_LABELi
XVBias: Define a text label for positive bias channel i (i = 1-4). [1.0.758]

MODm/XVN_LABELi
XVBias: Define a text label for negative bias channel i (i = 1-4). [1.0.758]

MODm/XVP_Vi
XVBias: Set the power on voltage (from 0.000 to +95.000) for positive channel i (i from 1 to 4). [1.0.758]

MODm/XVN_Vi
XVBias: Set the power on voltage (from -95.000 to 0.000) for negative channel i (i from 1 to 4). [1.0.758]

MODm/XVP_ENABLEi
XVBias: Set to 1 to enable positive channel i (i from 1 to 4) of module m, or 0 to power down and
disable. [1.0.758]

MODm/XVN_ENABLEi
XVBias: Set to 1 to enable negative channel i (i from 1 to 4) of module m, or O to power down and
disable. [1.0.758]

MODm/XVP_ORDERi
XVBias: Set the power on order (>= 0) for positive channel i (i from 1 to 4). [1.0.758]

MODm/XVN_ORDERIi
XVBias: Set the power on order (>= 0) for negative channel i (i from 1 to 4). [1.0.758]

Configuration 63

Timing Core

Most of the modules have timing cores integrated into their FPGAs. The timing core is essentially a state
machine. All timing cores are synchronized by the backplane, which distributes a master clock (MCLK)
signal, a reset (RESET) signal, and a load (LOAD) signal to all modules. Each timing core has an
associated RAM (with space for 2048 instructions) that is loaded with op-codes and output signal states
during system configuration. The same sequence of op-codes is loaded into all timing cores; only the
output signal states vary. The RESET signal forces all timing cores to begin from address zero. The
outputs of the timing core are a function of the module: the ADC module’s timing core outputs a clamp
signal, the driver module’s timing core outputs the desired clock level for each channel, and so on.

In addition to the instruction memory, there is also a set of 64 parameters that are used by the timing
core. These parameters can be used to set loop counts (such as number of pixels per line). They can
also be tested (zero / not zero) for conditional jumps, and can optionally be decremented by one by an
instruction. A parameter can be changed on the fly — the parameter to change and its new value are set
on all the boards, and then the LOAD signal is asserted to synchronously change that parameter on all
modules.

Instructions

The simplest timing core instruction is a NOP (no operation). The outputs are set to the state stored
with the NOP for one master clock cycle, and the timing core proceeds to the next instruction in
memory. All timing core instructions execute in one clock cycle, and must define the signal outputs for
the current clock cycle. Each output can be commanded high, low, or to keep its previous value.

A GOTO instruction gives the timing core a new address to begin execution at. The GOTO can be made
conditional on a parameter value.

A CALL instruction commands the timing core to push the next execution address and a count value to a
stack, and to begin execution at a provided address. The stack allows subroutines to be nested 16 levels
deep. The count value can be either a constant or a parameter. If the count is a parameter, the CALL
will only be executed if the count is non-zero. The CALL can be made conditional on another parameter
value. Counts and parameters are 20-bit values.

A RETURN instruction commands the timing core to decrement the active count value. If the count is
non-zero, execution jumps to an address provided with the RETURN instruction. If the count is zero, the
next execution address and active count value are popped from the stack.

Optionally during any instruction, a parameter can be decremented. This is useful when an external
trigger is meant to fire a sequence of one or more frame captures followed by a return to an idle mode.
Decrementing a parameter that’s already at zero has no effect. The decrement operation occurs before
control passes to the next instruction (whether that’s the next instruction in the script, or the result of a
CALL or GOTO during this clock tick).

Timing Core 64

Timing Script
The sequence of states the timing core will emit is defined by a timing script. Scripts are basic text with
the following statements allowed:

Any line starting with a hash is a comment, and is ignored. Blank lines are also ignored.

A name followed by a colon is a label, and is used as a target for GOTO, CALL and
RETURN instructions
MyLabel:

For any line that is not a label, the first token expected is the name of an output state.
These output states are defined outside of the script, and declare the state of the

timing core outputs for this clock cycle (high, low, or no change).

AllClocksLow

A jump is declared as follows:
AllClocksLow; GOTO MylLabel

Parameters are also defined outside the script, and are referenced by name.
To conditionally jump if a parameter is non-zero:
AllClocksLow; IF MyParameter GOTO MyLabel

To conditionally jump if a parameter is zero:
AllClocksLow; IF IMyParameter GOTO MyLabel

To call a subroutine 100 times using a direct value, a declared constant or a parameter:
AllClocksLow; CALL MySubroutine(100)

AllClocksLow; CALL MySubroutine(MyConstant)

MyParameter would have to be set to 100 for the subroutine to execute 100 times.

If MyParameter is zero, the call will not execute. Constants must be non-zero.
AllClocksLow; CALL MySubroutine(MyParameter)

All of these CALLs push the next execution address and current active count value to

the stack, set the active count value to the count provided, and jump to the given address.

A subroutine that has all clocks high for one clock tick would look like this:
MySubroutine:

AllClocksHigh; RETURN MySubroutine

The RETURN statement tells the core to decrement the active count. If zero, it pops the
return address and active count from the stack. If non-zero, it jumps to the provided

address (executing MySubroutine again).

It’s often convenient to hold a particular output state for a given number of clock cycles.
This could be done by defining a subroutine with just one instruction (as in the

MySubroutine example above) and calling it 100 times. This can also be accomplished

as follows:

Timing Core 65

AllClocksHigh; AllClocksHigh(99)
This implicitly generates a subroutine and calls it — all clocks will be high for 100 clock cycles.

Here is an example script with output. A timing core with outputs A through E is assumed,
with a single output high in each state

ExampleStart:

StateA

StateB; CALL ExampleSub(2)

StateE; GOTO ExampleStart

ExampleSub:

StateC; StateC(3)

StateD; RETURN ExampleSub

Output | Output States vs Time

A

B

To decrement a parameter, add a directive to the end of a line like this:
AllClocksLow; MyParameter--
AllClocksLow; CALL MySubroutine(100); MyParameter—

Backplanes with firmware >=1.0.1105 can also increment a parameter
AllClocksLow; MyParameter++

Timing Core

Timing Core States

The states used in a timing script are defined by the configuration file. The STATES key declares the
number of timing states defined (0...2047). Each state is then defined by a set of subkeys for a STATEn
key (where n is 0...2047). The first subkey is STATEn/NAME, and it defines the name used to reference a
state from the timing script. The next subkey is STATEn/CONTROL, which defines the backplane control
clocks. This subkey has the form:

STATEn/CONTROL=a, b ; a is the hexadecimal clock state, where:
; Bit @ = INT
; Bit 1 = FRAME
; Bit 2 = LINE
; Bit 3 = PIXEL

; b is a hexadecimal flag. When a bit is 1, it
; indicates that the corresponding clock should
; keep its previous value.

The clock state for each module is defined by a STATEn/MODi subkey. The format of the clock state
data varies based on which module is being used. For the ADC module:

STATEn/MODi=a,b ; a is the hexadecimal clock state, where:
; Bit @ = CLAMP
; b is a hexadecimal flag. When a bit is 1, it
; indicates that the corresponding clock should
; keep its previous value.

For the clock driver module:

STATEn/MODi=dllevel,dlslew,dlkeep,d2level,..,d8keep
; dnlevel is the floating point target clock
; level for each channel in Volts. This can
; also be a constant name.
; dnslew is @ to select the slow slew rate,
; and 1 to select the fast slew rate.
; dnkeep is 1 to leave the level and slew
; unchanged, and © to use this state’s values.

For the Heater modules (and LVBias/LVXBias modules < 833):
STATEn/MODi=dlstate,dlkeep,d2state,..,d8keep
; dnstate is the DIO state (@ = low, 1 = high).

; dnkeep is 1 to leave the state
; unchanged, and @ to use this state’s value.

Timing Core 67

For LVBias/LVXBias modules (with firmware > 833):

STATEn/MODi=d1state,dlkeep,d2state,.., d8keep,bcmd,bch,bval
; dnstate is the DIO state (© = low, 1 = high).
; dnkeep is 1 to leave the state
; unchanged, and @ to use this state’s value.
; bcmd: 1 = generate a bias command, @ = NOP
; bch: bias channel to command (1-390)
; bval: bias voltage to command (-14.0 to 14.9)

For HVBias/HVXBias modules (with firmware > 833):

STATEn/MODi=bcmd,bch, bval
; bcmd: 1 = generate a bias command, @ = NOP
; bch: bias channel to command (1-390)
; bval: bias voltage to command (0.0 to 31.9)

For XVBias modules (with firmware > 1090):

STATEn/MODi=pcmd,pch,pval,ncmd,nch,nval
; pcmd: 1 = generate a P bias command, © = NOP
; pch: P bias channel to command (1-4)
; pval: P bias voltage to command (0.0 to 95.0)
; ncmd: 1 = generate a N bias command, @ = NOP
; nch: N bias channel to command (1-4)
; nval: N bias voltage to command(©.0 to -95.0)

For the HS module:

STATEn/MODi=hslstate,hslkeep,..,hs1l2keep,dlstate,dlkeep,..,ddkeep
; hsnstate is a 10 digit binary sequence for
; hs channel n, where each © or 1 in the
; sequence represents the clock state for 1 ns
; of the 10 ns master clock tick.
; hsnkeep is 1 to leave the previous sequence
; unchanged, and @ to use this state’s value.
; dnstate is the DIO state (0 = low, 1 = high).
; dnkeep is 1 to leave the state
; unchanged, and @ to use this state’s value.

For the LVDS module:

STATEn/MODi=lvdslstate, lvdslkeep,..,1vdsl6keep,dlstate,dlkeep,..,ddkeep
; lvdsnstate is the state for LVDS channel n
; (0 = low, 1 = high)
; lvdsnkeep is 1 to leave the previous state
; unchanged, and @ to use this state’s value.
; dnstate is the DIO state (@ = low, 1 = high).
; dnkeep is 1 to leave the state
; unchanged, and © to use this state’s value.

Timing Core 68

Sampling and Deinterlacing

The CCD outputs are continuously sampled at 100 MHz by the ADC modules. The controller needs to
know which samples to use for calculating a pixel value, and where to put those pixels in the image
frame buffer. The timing for these operations is controlled by the FRAME, LINE, and PIXEL control
clocks. PIXEL goes high for one master clock tick at the start of a pixel. This pulse causes the internal
counters and accumulators for performing correlated double sampling (CDS) to reset to zero. CDS is
performed by summing the ADC samples when the CDS counter is between SHP1 and SHP2 to get a
reset level value, summing the ADC samples when the CDS counter is between SHD1 and SHD2 to get a
video level value, normalizing the two values, and then calculating the difference between those two
values. This calculated value is then adjusted by the digital gain and offset defined in the tap
configuration. The accumulators are 32 bits, and the emitted pixel values can be either 16 or 32 bits.
The CDS counters are 16 bit, so the longest pixel sampling time is 655.36 us, or 1.5 kHz.

The ADM modules sample at 12.5MHz. They sample after every 8" tick of the 100MHz clock, and emit
an 18 bit sample. The 18 bit sample is truncated to 16 bits, and that value is repeated 8 times to feed
the CDS processor at the normal 100MHz rate. Dithering is added to the sample during those 8 ticks
such that averaging the 8 values recovers the original 18 bit sample. It’s therefore best (but not
required) to make the SHP/SHD values a multiple of 8 when using an ADM channel. The system
determines when to trigger an ADM sample using a counter that is reset by PCLK.

The pixel values for each CCD output (tap) are sent to the deinterlacing engine, which calculates the
destination frame buffer memory address for each arriving pixel and writes the pixels into the frame
buffer. The deinterlacing engine maintains internal pixel, line and frame counters, and keeps track of
which frame buffers are locked for writing or reading. If the FRAME clock is high when the PIXEL clock
goes high, the line and pixel counters are reset and the frame counter is incremented. If the LINE clock
is high when the PIXEL clock goes high, the pixel counter is reset and the line counter is incremented.
The PIXELCOUNT and LINECOUNT configuration keys specify how many pixels and lines the deinterlacing
engine waits for per tap before marking a frame complete and locking the next unused frame buffer for
writing.

For line scan applications, set the LINESCAN configuration key to 1. The CCD timing should be written so
that the FRAME signal goes high at the beginning of each line. The deinterlacing engine will then acquire
lines into the current frame buffer until LINECOUNT lines have arrived, and then the frame will be
marked complete and the next frame buffer started. In this way, a large number of lines that arrive
quickly can be aggregated into a frame buffer for asynchronous readout by the host PC. Under the
hood, the FRAME signal starts a frame as usual when the first line arrives, and then is ignored until the
current frame buffer is complete.

Internally, the deinterlacing engine decides where to put each tap’s pixels using a pointer that has an
initial value at the start of a frame, and is adjusted using specified deltas after each pixel and line. A CCD
with four outputs, one in each corner, would have four taps defined that initially point to the four
corners of the frame buffer. The deinterlacing pattern is defined by the TAPLINES, TAPLINEN,
PIXELCOUNT, LINECOUNT, FRAMEMODE and SAMPLEMODE configuration keys. FRAMEMODE is set to 0

Sampling and Deinterlacing 69

(top) if the first sampled pixels should be written to the top of the frame buffer. FRAMEMODE is set to 1
(bottom) if the first sampled pixels should be written to the bottom of the frame buffer. FRAMEMODE is
set to 2 (split) if the first sampled pixels from the first half of the taps should be written to the top of the
frame buffer, and the first sampled pixels from the second half of the taps should be written to the
bottom of the frame buffer. SAMPLEMODE is set to O for 16 bit pixels, and 1 for 32 bit pixels. The order
and readout direction of each tap, along with the digital gain and offset to apply to each tap, are
specified in a list of taps. The number of tap configuration lines is defined by the TAPLINES key. Each
TAPLINEN key has the format:

TAPLINEn=tap,gain,offset

“tap” is a string of the form ADnd, where nis 1 to 16, and d is ‘L’ or ‘R’. The AD channel for atap (n)is 1
for the first channel from an ADC module in backplane slot 5, 2 for the second channel from backplane
slot 5, up to 16 for the fourth channel from an ADC module in backplane slot 8. The readout direction
(d) is ‘L’ if the first pixel values should be written at the left edge of a tap’s portion of the frame buffer,
and ‘R’ to start at the right edge. “gain” is a floating point gain such as “1.0”. By default, the reset level
is expected to be greater than the video level (pixel value = reset level — video level). If “gain” is
negative, the reset level is assumed to be less than the video level (pixel value = video level — reset
level). “offset” is an integer to add to the pixel values, which is useful to keep black pixels at some value
above zero so that RMS noise can be accurately measured.

When using ADM modules, “tap” is of the form AMnd, where nis 1to 72 and d is ‘L’ or ‘R’ as before.
ADM channels 1 to 18 map to slot 5, channels 19 to 36 map to slot 6, and so on.

Raw Samples

Tuning a CCD is aided by viewing the raw CCD output waveform, as it allows for the direct inspection of
characteristics such as settling times, optimal sampling windows, reset level stability, and clock feed
through. The Archon controller allows some of the raw 16 bit 100 MHz ADC samples for a single channel
to be acquired simultaneously with the normal frame data. Due to the finite frame buffer size (512 MB),
typically only a portion of the frame can be acquired in this way.

To enable the capture of raw data, set the RAWENABLE key to 1. Set the RAWSEL key to the desired AD
channel (0 for channel 1 of the ADC module in slot 5 through 15 for channel 4 of the ADC module in slot
8). Set the RAWSTARTLINE and RAWENDLINE to the first and last lines of raw data to capture. Set the
RAWSTARTPIXEL key to the pixel number when raw data should start being captured for each line. Set
RAWSAMPLES to the number of raw samples to store from each line. The number of samples will be
rounded up to the next even block size (a multiple of 1024). Note that raw captures can quickly become
very large: capturing 1000 lines of 1000 pixels with a 100 kHz pixel clock amounts to 1 gigasamples, or 2
gigabytes.

Sampling and Deinterlacing 70

Frame Buffers

There are three 512 MByte frame buffers, occupying the upper 1.5 GBytes of the backplane’s 2 GBytes
of DDR3 RAM. There is usually one frame locked for reading (by the host), and another locked for
writing (by the deinterlacing engine). When the deinterlacing engine starts a new frame (FRAME clock is
high when PIXEL clock goes high), it locks the next unlocked frame buffer, updates the frame buffer’s
info (time stamp, frame number, etc.), and begins filling the buffer with data. It sets the
BUFNCOMPLETE flag after the frame is complete. The FRAME command reports the status of the three
frame buffers, including the width, height, sample size, timestamp, how many pixels or lines are
complete, and whether the frame is complete. A host program can reduce frame capture latency by
fetching partial frame data in advance using the BUFnLINES status to determine what data is valid now.

Typically, a host program will issue the FRAME command, and check the returned status data to see if
there are any frame buffers holding completed frames with a frame number greater than what the
program has already captured. If a new frame exists, the host program issues a LOCK command to
prevent that buffer from being overwritten, and then fetches the pixel data using a FETCH command.
The number of bytes to fetch for a complete frame is the frame width times the frame height times 2
(for 16-bit samples) or 4 (for 32-bit samples). Divide the number of bytes by 1024 and round up to
determine the number of blocks to fetch. The starting address is 0xA0000000 for frame buffer 1,
0xC0000000 for frame buffer 2, and 0xEO000000 for frame buffer 3. Smaller portions of the frame data
can be fetched at will using FETCH commands with appropriate offsets and lengths. Raw data in a frame
buffer is retrieved using the same FETCH command, but after adding the frame buffer offset given by
BUFNRAWOFFSET to the base frame buffer address.

If the BIGBUF configuration key is set to 1, the 1.5 GB of frame buffer memory space is divided into two
larger 768MB frame buffers. The FRAMENBASE keys from the frame status command report the new
base addresses of the frame buffers (0xA0000000 and 0xDO000000). FRAMES3 is unused in this mode.

Sampling and Deinterlacing 71

GUI

Archon is provided with an example GUI application that implements the necessary functions to
communicate with the controller over its network interface, apply a configuration, and read back
captured images. The GUI is built on the Qt framework (http://qt-project.org) for cross-platform
operation. It also uses the gwt library (qwt.sourceforge.net) for plotting functions. As of version
1.0.786, the GUI can be started with the command line parameter “-small” to add scroll bars for use on

smaller monitors.

The next two sections will describe the GUI in conjunction with an example Archon controller system as
seen in Figure 31.

ADC Module
ADC Slot

Driver Module General Purpose Slot

Power Board

Power Cable

Backplane

Trigger Connectors

Figure 31: Example Archon Controller

The example controller has a driver module in slot 3, and an ADC module in slot 5. A jumper wire
connects channel 1 of the driver to channel 1 of the ADC. The other three ADC channels are grounded.
Powering on Archon, launching the GUI, and clicking “Connect” yields something similar to Figure 32.

GUI 72

-ioix]

File System Maodule Help

Archon [P Address | nnnoponnnndzzns7e62: System startup [main 54151

0002 DO000D0O0OCH32135729: DA 2440847 15E301C [main:5445]
Disconneck
Cleat Log
System | TimingSeripe | TimingStates | Parameters | DS /Deic | Imeage | HorizoneslPlot | werticalPlot | PTCRt | Rewimege | Horizonesl Raw Plot | verticalRawPloe | sio3:DRIVER | Slots: D
—System —Status
Backplane Rev Yersion ID Temp Status walid: L
Backplane %12 € 1.0_404 0D244984715E301C 31.4C Status Count: 5495275
Slot Module Rev Yersion ID Temp
—Power
1 Empty
2 Empty Power ID; 000000675404
3 Driver C 1.0.37% Ol31AE3BEEAFASS 28.0C Supply ¥ A
4 Empky Pays Z.643 1.851
5 4D A 1.0.285 01393CFOCEZFOAZO ZT.30C Po¥ §.1les 1.668
6 Empty PaY 6.197 0.013
7 Empky ey -6.223 0.014
& Empby P17Y 17.188 0.016
9 Empty NiTY -17.181 0.014
10 Empty Pasy 35.215 0.000
11 Emply T3S 0000 0.000
12 Empty USER 0.001 -0.00L
HEATER ~ 2§.085 -0.001
—Frame Euffers
—Trigger Control
Buffer Frame Width Height Pizels Lines Raw Blocks Raw Lines Status 99
1 o o o i 0 0 o Fatch | I™ Trigger Qut Farce
™ Trigger Out Level
2 i} i} i} o o i} o Fetch |
r Trigger Qut Irevert
3]]] 0 0]] Fetch |
r Trigger Quk Power
I™ iuto Fetch
Apply
Base Filename: Itemp
Apply &l I:I Pawer On | Pawer OFf |
[1dle [Frame: 0 |Signal: 0.0 NMoise: 0,00 DR: 0.0 dB 4

Figure 32: Archon GUI

The top portion of the GUI is dedicated to Archon communication, with the controller’s IP address on
the left, and a log of informational messages from the GUI and controller on the right.

The File menu allows an Archon configuration file (*.acf) to be loaded or saved. The configuration file is
stored in the Windows INI format, with two sections. The first section is [SYSTEM], which stores the
output of the SYSTEM network command. This allows the GUI to display and edit a system configuration
even without a controller attached. The second INI section is [CONFIG], which contains all of the
configuration key/value pairs that are sent to the controller.

A configuration can also be loaded or saved in the (*.ncf) format. This format modifies the normal
key/value pairs so that lists (such as the timing script lines) do not have line numbers. This allows for
easy configuration file comparisons using modern source control tools.

The System and Module menus allow the firmware of the connected controller to be updated or
verified. For the system, the backplane firmware, microprocessor code, and/or camera configuration
can be flashed depending on which items are checked in the menu. For the modules, select the target
module and then select Flash or Verify. In either case, the GUI will prompt for a firmware file (*.mcs) to
open.

GUI 73

The main buttons at the bottom of the GUI include “Apply All”, which writes the camera configuration
specified in the rest of the GUI to the controller, and “Power On” and “Power Off” buttons to enable or
disable power to the CCD. The box next to the power buttons is gray for an unconfigured system or
unknown power state, red when power to the CCD is off, and green when power is on.

The status bar at the bottom of the GUI displays the current operation and its progress, the most recent
captured frame number, and statistics from the image window.

The remainder of the GUI is broken into tabs, with several system-wide tabs, and individual tabs for
each installed module.

System Tab
The system tab is divided into several boxes. The System box lists the PCB and firmware version, unique
ID, and temperature of the backplane and all installed modules.

The Frame Buffers box shows the status of the three 512 MByte frame buffers in the controller. This
includes the frame number stored in each buffer, along with the frame’s width, height, completed
pixels, completed lines, additional raw mode data size, and status (read/write/complete). An individual
buffer can be copied to the GUI’s image buffer by clicking the “Fetch” button next to the desired frame.
Alternatively, the “Auto Fetch” option can be selected, and the GUI will constantly retrieve the most
recently completed frame. In addition, a base filename can be specified for frames saved to disk.

The GUI continuously fetches status data from the controller while connected, including temperatures,
voltages, etc (see the STATUS and FRAME network commands). The Status Box reports whether the
status data retrieved is valid, and how many times the controller has updated its internal status

registers.

The Power box displays the power board’s unique ID, along with voltage and current readings for each
of the system power supplies.

The Trigger Control box allows the controller’s trigger output to be configured. Select the Force
checkbox to force the trigger output high or low (depending on the state of the Level checkbox), or
deselect it to have the trigger controlled by the timing core. Select the Invert checkbox to invert the
sense of the trigger (active is defined as a high voltage by default). Select the Power checkbox to locally
power the trigger output, or deselect it to optoisolate the output. Click the “Apply” button to apply the
trigger configuration.

Timing Script Tab

Most of the Timing Script tab is dedicated to a textual timing script entry area. The format of the timing
script is defined in the Timing Script section. The “Load Timing” button downloads the timing script,
timing states, and timing parameters to the controller and resets the timing cores. The “Timing Reset”
button only resets the timing cores without changing any other configuration data.

GUI 74

Timing States Tab

The individual timing core states are defined in the Timing States tab, as seen in Figure 33. The list of
states is on the left. Add a new state with the “Add” button. Rename it by double-clicking the new state
name. Delete a selected state with the “Delete” button. Duplicate a state with the “Duplicate” button.
Move selected states up and down in the list with the “Move Up” and “Move Down” buttons. The levels
of all system signals during a state are displayed in the tabs to the right of the state list when a state is
selected. The Control tab shows system-wide control signals (the Integrate, Frame, Line, and Pixel
signals). Each installed module with configurable timing is given its own tab. Simple signals can be high
(checkbox checked) or low (unchecked), and can have Keep on or off. More complex signals such as a
clock driver channel will have other data, such as slew rate and the desired clock voltage. In either case,
if Keep is checked, the signal state will remain unchanged from its previous state. If Keep is unchecked,
the signal will assume the new values defined for this state when it executes.

Bl =

File System Module Help

Archon IP Address 00000000000422057662; System startup [main:5+15]

[oomz | 0UDDOO0DDO0432135729: DNA: 2449847 1SE301C [main 5445]

Disconneck
Clear Log
System | TimingScript | Timing States | Parameters | €DS(Deint | Image | HorizontalPlat | verticalPlot | PTCPIot | Rawimage | Horizontal RawPlot | Vertical RawPlat | Slot 3: DRIvER | Slat5: AD
State Name Signal States
A Cortrol it 3:DRIVER | Slot5: AD |
< Name Level (¥) Slew Fast Keep ID
1.0 i I ot
-2.5 r e
1 |]
i)
1 MV s
1 M cHe
1 M o7
1 |]
Move Up | Mave Down I
Add | Delete I
Duplicate
Apply Al | |:| Pawer on Power Off
[tdle [Frame: 0 [Signal: 0.0 Moise: 0,00 DR 0.0 d& [#4 v 10 value: 671744 4

Figure 33: Timing States Entry

Parameters Tab

The Parameters tab is split into two halves. The left half is a list of up to 64 timing core parameters, in
NAME=VALUE form. These are used in the timing script, and can be changed on the fly by clicking the
“Apply” button. The right half of the Parameters tab is a list of named constants. These can be used in

GUI 75

many places in the GUI (in the timing script, as clock voltage levels, etc.), but changed values only take
effect after reconfiguration (via an “Apply” button, reloading the timing, etc.).

VCPU Tab

The VCPU tab contains tabs for each installed module with a VCPU. A VCPU program can be entered for
each module. In addition, there are fields to set the 16 16-bit VCPU input registers, and to read the
current values of the 16 16-bit VCPU output registers. The “Apply” button loads and applies the VCPU
program, input registers, and DIO settings for the currently selected module. See the VCPU chapter for
the description of the VCPU programming language.

CDS/Deint Tab

The CDS/Deint tab contains the settings for the digital correlated double sampling filter and the
deinterlacing engine. The First/Last Reset Sample and First/Last Video Sample fields control which 100
MHz ADC samples after a pixel clock are summed for the reset/reference level, and which are summed
for the video level. The CDS output is the reference level minus the video level. The CDS accumulators
are 32 bits, and are normalized based on the number of summed reset or video level samples. The
Sample Mode setting controls whether 16 bits (Normal) or 32 bits (HDR) are passed to the deinterlacing
engine.

The remaining settings configure the deinterlacing engine. The Pixels Per Tap and Lines Per Tap settings
define the number of pixel and line clocks per frame per CCD output. The engine uses these values to
determine when a line or frame is finished. The Frame Mode defines whether the first pixel should be
written to the top of the frame (Top), the bottom of the frame (Bottom), or if the first half of the
outputs should be written to the top and the second half to the bottom (Split). Big Buffers enables two
768MB frame buffers instead of the standard three 512MB buffers.

If raw/oscilloscope data for one channel should be captured in addition to normal frame data, check the
Raw Enable checkbox. The Raw Channel Select field selects the raw capture channel. 1—4 selects a
channel from the first ADC slot, 5 — 8 from the second ADC slot, etc. The Raw Start Line and Raw End
Line indicate during which portion of a frame raw data should be captured. Raw Start Pixel defines
when in a line raw data capture should start. Raw Samples configures how many 16 bit 100 MHz
samples should be acquired per line. This is rounded up to a multiple of 1024.

The Tap Order box to the right is filled with the CCD output order, as described in the deinterlacing
section.

Click the “Apply” button to load and apply the CDS/deinterlacing settings to the controller.

Image Tab

Captured images are displayed in the image tab. Move the cursor over the image to display X, Y, and
pixel values in the lower right corner of the GUI. Left click to select the X and Y plot locations (visible
under the Horizontal Plot and Vertical Plot tabs). Right click and drag to draw a signal statistics box, and
middle click and drag to draw a noise statistics box. Statistics are displayed at the bottom of the GUI.
Zoom in and out with the Zoom buttons. Adjust the image brightness and contrast with the sliders at

GUI 76

the bottom of the image tab, and reset to the defaults with the “Reset LUT” button. Save and load raw
image data with the “Save Frame” and “Load Frame” buttons.

Plot Tabs

Left click and drag to zoom on a plot. Middle click to restore the display to the full plot. Right click and
drag to pan. Check the “Average over signal area” checkbox to display an average plot of the image
rows or columns encompassed by the green signal box. Save a text file of the plot data (named
“hplot.txt” or “vplot.txt”) by clicking the “Save Plot” button. The PTC Plot can be used to manually
acquire points for a photon transfer curve. Click the “Snap PTC” button while the controller is taking a
sequence of images with constant illumination to add a signal/variance point to the PTC plot. The GUI
calculates the PTC signal as the signal box mean minus the noise box mean, and the PTC variance as the
variance of the difference of the last two frames. Change “PTC frames to average” to a number greater
than 1 to have the GUI average the variance of multiple sets of images. The PTC plot point will be added
after the requisite number of frames have been captured. Clear the PTC plot with the “Reset PTC”
button.

Raw Tabs
The Raw Image, Raw Horizontal Plot, and Raw Vertical Plot tabs operate similarly to the Image and Plot
tabs, but display the captured raw data from a frame if available.

ADC Tab

An ADC tab will be added to the GUI for each installed ADC module. The “Clamp High” and “Clamp Low”
settings define the DC restore voltages for the positive and negative sides of the AC-coupled differential
inputs. The best noise performance occurs when these are both zero, but they can be offset to use
more of the ADC dynamic range. Raw ADC data should be inspected to verify that the CCD reset level is
not exceeding the ADC input range. The hardware preamp gain is selected with the “Preamp Gain”
control, with high gain corresponding to a 1.3 V full scale, and low gain giving a 4 V full scale. The
“Apply” button applies the changes made for a specific module to the controller.

Driver Tab

A Driver tab will be added to the GUI for each installed clock driver module. Each channel can be
assigned a label for user reference. The labels will also appear in the Timing States tab for the
corresponding timing signals. Fast and slow slew rates are defined for each channel in volts per
microsecond. Each channel can also be enabled or disabled. Disabled channels use significantly less
power. The “Apply” button applies the changes made for a specific module to the controller.

Bias Tabs

An LVBias or HVBias tab will be added to the GUI for each installed bias module. Each channel can be
assigned a label for user reference. The desired bias levels when CCD power is on are entered in the
“Command” boxes. A current limit can be entered for the six high power channels. The measured
voltage and current are displayed. When power to the CCD is off, all channels should be at about zero
volts. The “Order” fields define the power up and down sequence of the biases. Order 0 biases power
on first and off last, Order 1 biases power on second, etc. The high power biases can additionally be

GUI 77

enabled or disabled. Disabled biases draw significantly less power. The “Apply” button applies the
changes made for a specific module to the controller.

Basic Examples

This section walks through some examples using the system shown in Figure 31. A single clock driver
channel is connected to an ADC channel. The clock driver will simulate a CCD output, and the resulting
simulated images will be captured.

To begin, turn Archon on, and click the “Connect” button to connect to the controller and fetch the
system configuration. The result is a screen similar to Figure 32. The next step is to define the states for
the timing core in the “Timing States” tab. Click the “Add” button. A new state named “new” appears in
the “State Name” list. All of the signal states (under the “Control”, “Driver”, and “AD” tabs) default to
“Keep”. In a typical script, most states will only change one or a few of the clocks at a time, and leave
the rest unchanged. However, the first state should define all of the signals as a starting point. Rename
the “new” state to “Reset” by double-clicking on “new” and typing “Reset”. Clear all of the “Keep”
checks under the “Control” tab and leave the “INT”, “FRAME”, “LINE”, and “PIXEL"” checkboxes cleared.
Under the “Driver” tab, clear the “Keep” checkbox for channel 1 and enter a level of “0.0”. Under the
“AD” tab clear the “Keep” checkbox and set the “Clamp” checkbox.

Continue adding states. Leave the “Keep” checkboxes set except for the signals defined in the table

below.
State Name Frame Line Pixel Driver Ch 1 Clamp
Reset Off Off Off 0.0 On
Idle 0.0 Off
Frame On
Line On
Pixel On
Clamp On
A Off Off Off 0.0
B Off Off Off -0.25
C Off Off Off -0.75
D Off Off Off -1.5
X

A simple test script to exercise the clocks is listed below. Enter it in the “Timing Script” tab. Also set the
fast slew rate for channel 1 under the “Driver” tab to 100 V / us.

Start:

; X(99)

5 X(99)

; X(99)

; X(98)

; GOTO Start

X ONwW>

Basic Examples 78

Click “Apply All” followed by “Power On”. If everything is correct, the controller will be outputting a
waveform from clock driver channel 1 that goes from 0V, to -0.25 V, to -0.75 V, to -1.5 V. It will sit at
each level for 1 us (100 x 10 ns), and slew between levels at 100 V / us. An oscilloscope capture of the
waveform is shown in Figure 34. Experiment with the state durations and slew rate. Changing the first
line to “A: X(199)” and setting the slew rate to 5V / us gives Figure 35.

(@D S00mv

l18:51:17

Figure 34: Test Clock Example

Basic Examples

79

[j'soot'nv. s — ']"'1:0(.3;15 — | I‘"Z..SUIGS/S. ‘ | (').J"—smm'v"l

" (W 10.00 % 10M points

Figure 35: Modified Test Clock Example

The next script uses the previously defined states to generate a simulated 2 x 2 image.
Reset

Wait for frames to be requested (Count greater than 0).
Clamp ADC inputs while idle.

Start:

Idle; X(100)

Clamp; X(2000)

Idle; X(100)

Idle; IF !Count GOTO Start

Start a frame
Frame

First line

Line

Idle; CALL BlackPixel
Idle; CALL DarkPixel
Idle; X(100)

Clamp; X(2000)

Idle; X(100)

Basic Examples

80

Second line

Line

Idle; CALL MedPixel
Idle; CALL BrightPixel
Idle; X(100)

Clamp; X(2000)

Idle; X(100)

Decrement the number of frames and return to the main loop
Idle; GOTO Start; Count--

Individual pixel timing subroutines with various intensities
BlackPixel:

Pixel

A; X(1020)

X; RETURN BlackPixel

DarkPixel:

Pixel

A; X(509)

B; X(510)

X; RETURN DarkPixel

MedPixel:

Pixel

A; X(509)

C; X(510)

X; RETURN MedPixel

BrightPixel:

Pixel

A; X(509)

D; X(510)

X; RETURN BrightPixel

The initial reset sets all of the signals to known values, and leaves the DC restore clamp on. During
system configuration, the timing core is held in reset, and outputs the signal levels defined by the first
state in the script. Keeping the clamp on during this time prevents the AC-coupled preamps from
drifting. The “Start” label is the beginning of this script’s main loop. If the “Count” parameter is zero,
the script just clamps the preamps. Once “Count” is greater than zero (when the user has requested a
frame), a frame is started. The system is notified that a frame is starting when the Frame signal is high
at the same time as the Pixel signal (the Frame and Line signals are only sampled by the system when
the Pixel signal is high). This is accomplished by the “Frame” state, which sets the Frame signal high. All
of the states between “Frame” and “Pixel” have the Frame signal set to “Keep”, so it remains high. The
states after the “Pixel” state all clear the Frame, Line, and Pixel signals, so subsequent states don’t
unintentionally start a new line or frame.

Basic Examples 81

The script next generates two lines. The first line generates a black pixel (the reset and video levels are
both 0 V), followed by a low level pixel (reset level of 0V, signal level of -0.25 V). The two pixel
sequences are encoded in subroutines. In this script, each pixel takes exactly 1024 clock cycles to
complete. The initial “Idle; CALL” is the first cycle, the start of pixel flag “Pixel” is the second, and the
subsequent clock level states and final “X; RETURN” add the remainder to get to exactly 1024. After the
two pixels per line, the preamp is clamped again. The second line emits a mid-level pixel followed by a
bright pixel. After the second line is complete, the “Count” parameter is decremented, and execution
jumps back to the main loop.

Before executing this script, some other settings must be adjusted. The “Count” parameter must be
defined in the “Parameters” box of the “Parameters” tab, by entering “Count=1". In the “CDS / Deint”
tab, set the first reset sample to “100” and the last reset sample to “400”. Set the first video sample to
“600” and the last video sample to “900”. Leave the sample mode at “Normal” (16 bits per pixel), set
“Pixels Per Tap” to “2”, and “Lines Per Tap” to “2”. Leave “Frame Mode” at “Top”, and check the “Raw
Enable” checkbox. Set “Raw Channel Select” to “1”, “Raw Start Line” to “0”, and “Raw End Line” to “1”.
Set “Raw Start Pixel” to “0”, and “Raw Samples” to “2048”. The effect of all of this is that the system will
expect two lines of two pixels each, and will average 300 samples during the reset level and 300 samples

|”

during the video level. The system will also store two lines of raw data, which will encompass the entire
image since each pixel has a duration of 1024 samples. Under “Tap Order”, enter “AD1L, 1.0, 100” (only
a single AD channel, starting at the left, with a digital gain of 1 and an offset of 100). Channel 1 of the
clock driver should already be set to 100 V / us and enabled under the “Driver” tab. In the “AD” tab, set
both clamp levels to 0 V, and select the low gain mode.

The complete configuration has now been entered. Click “Apply All”, followed by “Power On”. Check
the “Auto Fetch” checkbox in the “System” tab. In the “Parameters” tab, click “Apply”. This sets the
“Count” parameter back to 1. The running script (which has been idling since “Apply All”) will see Count
change, emit a frame, decrement “Count”, and go back to idling. The GUI will detect the newly
completed frame and fetch the data. The captured image (zoomed in to show the four pixels) is shown
in Figure 36. The pixel values in DN are 100, 3571, 10537, and 21003. A plot of the first raw line is
shown in Figure 37. The first 1536 samples average 32768 DN, and the remainder of the line (ignoring
the time for slewing) is at 29297 DN. A plot of the second raw line is in Figure 38. The first 512 samples
are at 32768 DN, the next 512 samples are at 22331 DN, the next 512 samples are at 32768 DN, and the
final 512 samples are at 11865 DN (again ignoring the short slewing intervals). Archon calculated the
pixel values as follows:

Basic Examples 82

Pixel 1: [(Reset level = average of samples 100 to 400 of line 1 = 32768) — (video level = average of
samples 600 to 900 of line 1 = 32768)] x (CDS gain = 1.0) + (CDS offset = 100) = 100.

Pixel 2: [(Reset level = average of samples 1124 to 1424 of line 1 = 32768) — (video level = average of
samples 1624 to 1924 of line 1 = 29297)] x (CDS gain = 1.0) + (CDS offset = 100) = 3571.

Pixel 3: [(Reset level = average of samples 100 to 400 of line 2 = 32768) — (video level = average of
samples 600 to 900 of line 2 = 22331)] x (CDS gain = 1.0) + (CDS offset = 100) = 10537.

Pixel 4: [(Reset level = average of samples 1124 to 1424 of line 2 = 32768) — (video level = average of
samples 1624 to 1924 of line 2 = 11865)] x (CDS gain = 1.0) + (CDS offset = 100) = 21003.

[Archon GUI 1.0.404
e e Hel

System | Timing Seript | Timing States

Parameters | DS /Deint Image

Horizontal Plot | vertical Plot | PTCPIot | Rawimage | HorizontalRawPiot | VerticalRaw Plot | Slot3:DRIVER | Siots: D

Signal Mean: 21003.0 St 0,00 Yar: 0,00

03.0 Std: 0.00 DIF Var: -

=l Lt Reset LT
ZoomIn Zoom 131 Zoom Out Open Frame | _SaveFrame | Save Sequence | save Sequence frame count: [1 I~ save al frames
ooy Al] _romeron | _pomerofr

[1die

[Frame: 10 Signal: 0.0 Noise: 0,00 DRi 0.0 d6 A

Figure 36: Example Image

Basic Examples

83

I Archon GUI 1.0.404

Figure 38: Raw Samples for Line 2

Basic Examples

84

Grounding

Extracting maximum performance from low noise, scientific CCDs requires extra attention to a system’s
grounding configuration. Archon is designed to accommodate various topologies. By default, the
chassis is connected to the earth ground pin on the power connector, and signal ground (the ground
planes of the backplane and all modules) is isolated from the chassis. Typically, signal ground and earth
ground are tied together at a single point to avoid loops. If signal ground and the chassis are tied
together at the CCD (somewhere in the dewar, perhaps), no further action is necessary. Often, signal
ground and chassis ground are tied together on a customized interface board (a custom interface board
plugs into the Archon module connectors and routes all of the signals to a set of user-defined
connectors for connection to the CCD). If the chassis is already earth grounded (perhaps because it’s
mounted to an earth grounded telescope), the Archon earth ground/chassis connection can be broken
by disconnecting the green earth ground wire that goes from the power connector to the corner of the
backplane. Alternatively, if there is no other connection between signal ground and earth ground, the
nylon washer between the green earth ground wire and the backplane can be removed, so that the
corner of the backplane becomes the single point ground.

The cabling chosen to connect to the CCD should have continuous shielding that has a low impedance
connection to both the Archon chassis and the dewar, and should be isolated from signal ground. Using
properly balanced and terminated differential amplifiers and cabling from the CCD outputs to the
Archon AD module inputs will further improve the system’s ability to reject external noise sources.

Grounding 85

VCPU

Each module with digital I/O lines contains an embedded 100 MHz real time 16-bit CPU, called a VCPU
(virtual CPU). The VCPU is programmed by including a simple textual VCPU assembly language program
in the Archon configuration. Each module can have a different VCPU program loaded. The Archon
controller compiles the program internally, and runs it on the VCPU. Each VCPU instruction executes
deterministically in 10 ns. The VCPU is useful for implementing low level communication routines with
auxiliary hardware, such as for reading an RS-232 vacuum gauge or monitoring an 12C temperature
sensor.

Each digital I/O line can be configured as an input or an output, and can be controlled either by a
constant in the configuration file, a timing core output, or the VCPU. Any additional necessary digital I/0
interface hardware (such as an RS-232 translator, high voltage relay, etc.) is typically placed on a custom
Archon interface board.

Each VCPU communicates with the higher level system through a set of 16-bit registers. There are 16
input registers that the VCPU can read from, and 16 output registers the VCPU can write to. For
example, the VCPU might use an output register to store a temperature reading, or use an input register
to control the pulse width of a square wave it’s generating. The VCPU input registers are set using the
VCPU_INREGnN keys for each module. The VCPU output registers are reported by the STATUS command.
The VCPU input registers and program code are loaded when an APPLYALL, APPLYMOD, or APPLYDIO
command is given. The VCPU is held in reset while it’s being configured, and then begins running from
address 0 after the apply command completes.

Each VCPU contains 32 internal 16-bit registers for performing computations, named r0 to r1F.
Programs can be 512 instructions long. Each VCPU also has a 64 entry deep call stack. Each VCPU is
connected to an input and an output bus, which allows the processor to read or write to the digital /O
lines, a simple UART, or to the input and output registers described above. Zero (Z) and Carry (C) flags
are set based on the results of some instructions, and can be used to conditionally execute instructions.

VCPU Programs
VCPU programs are entered under the VCPU tab, within the tab for each module. Program lines can
contain the following:

- Blank lines (ignored)

“u,n

- Labels: an alphanumeric label followed by a “:

“u_n

- Constants: an alphanumeric constant name followed by an and then a value

- Register aliases: “ALIAS” followed by an alphanumeric alias followed by a register (rO —r1F)
- Instructions: An instruction of the form [conditional] instruction [destination][, source]

“u.n

- Comments: lines beginning with a “;

“.n

- Inline comments: an instruction can be followed by a “;” and then a comment

VCPU 86

An example instruction is:

IF Z LOAD re, 7

This will load the source value of 7 into register r0 if the zero flag is set. Registers are identified as r[hex

number], which can range from “r0” to “r1F”. Registers can also be given more readable aliases, as

shown below:

ALIAS rl1C LoopCounter
ALIAS rlC AnotherName

LOAD riC, 8 ; Sets rl1lC to 8
LOAD LoopCounter, 8 ; Sets rlC to 8
LOAD AnotherName, 8 ; Sets rlC to 8

Register aliases, constant names, and labels must be unique. When an instruction uses a constant, you

can specify it in decimal, hexadecimal, ASCII, or as a named constant or label. Everything but ASCII

constants are case-insensitive. GOTO and CALL instructions can use contants, labels, or register values

as a destination, which enables the use of jump tables.

MylLabel:
MyConstant = 100

LOAD
LOAD
LOAD
LOAD
LOAD
LOAD

VCPU Op-codes

NOP

LOAD rX, rY
LOAD rX, K

AND rX, rY
AND rX, K

ORrX, rY
ORrX, K

XOR X, rY
XOR rX, K

ADDrX, rY
ADD rX, K

ro,
ro,
ro,
ro,
ro,
ro,

100 ; Sets ro to 100

ox64 ; Also sets ro to 100

‘d’ ; Also sets ro to 100

‘\n’ ; Sets roe to newline (©xA)

MyLabel ; Sets r@ to the address of MyLabel
MyConstant ; Back to setting roe to 100

No operation. Delays for one clock cycle.

Load destination rX with the value in rY.
Load destination rX with K.

Load rX with rX AND rY, set Z if result is zero.
Load rX with rX AND K, set Z if result is zero.

Load rX with rX OR rY, set Z if result is zero.
Load rX with rX OR K, set Z if result is zero.

Load rX with rX XOR rY, set Z if result is zero.
Load rX with rX XOR K, set Z if result is zero.

Load rX with rX + rY, set Z if result is zero, set C if result > FFFF.
Load rX with rX + K, set Z if result is zero, set C if result > FFFF.

VCPU

87

ADDCY rX, rY
ADDCY rX, K

SUB rX, rY
SUB rX, K

SUBCY rX, rY

SUBCY rX, K

SLO rX

SL1rX

SLX rX

SLArX

SLB rX

RL rX

SRO rX

SR1rX

SRX rX

SRArX

SRB rX

RR rX

BRLrX, s

BRRrX, s

Load rX with rX + rY / K+ C, set Z if result is zero and last Z was set,
set C if result > FFFF.

Load rX with rX - rY, set Z if result is zero, set C if result < 0.
Load rX with rX - K, set Z if result is zero, set C if result < 0.

Load rX with rX—rY /K -C, set Z if result is zero and last Z was set,
set Cif result < 0.

Load rX(0) with 0, load rX(15-1) with rX(14-0), load C with rX(15), and
set Z if result is zero.

Load rX(0) with 1, load rX(15-1) with rX(14-0), load C with rX(15), and
clear Z.

Load rX(15-1) with rX(14-0), load C with rX(15), and set Z if result is zero.

Load rX(0) with C, load rX(15-1) with rX(14-0), load C with rX(15), and
set Z if result is zero.

Load rX(0) with B, load rX(15-1) with rX(14-0), load C with rX(15), and
set Z if result is zero.

Load rX(0) with rX(15), load rX(15-1) with rX(14-0), load C with rX(15),
and set Z if result is zero.

Load rX(15) with 0, load rX(14-0) with rX(15-1), load C with rX(0), and
set Z if result is zero.

Load rX(15) with 1, load rX(14-0) with rX(15-1), load C with rX(0), and
clear Z.

Load rX(14-0) with rX(15-1), load C with rX(0), and set Z if result is zero.

Load rX(15) with C, load rX(14-0) with rX(15-1), load C with rX(0), and
set Z if result is zero.

Load rX(15) with B, load rX(14-0) with rX(15-1), load C with rX(0), and
set Z if result is zero.

Load rX(15) with rX(0), load rX(14-0) with rX(15-1), load C with rX(0),
and set Z if result is zero.

Barrel rotate rX left s times, where s is 0 to 15.

Barrel rotate rX right s times, where s is 0 to 15.

VCPU 88

INPUT rX, rY
INPUT rX, K

OUTPUT X, rY
OUTPUT rX, K

GOTO rX
GOTO K

CALLrX
CALLK

RETURN
LOADRETURN rX, K

TEST rX, rY
TEST rX, K

TESTCY rX, rY

TESTCY rX, K

COMPARE rX, rY
COMPARE rX, K

COMPARECY rX, rY
COMPARECY rX, K

SETCY

CLEARCY

Load rX with the data read from input port rY.
Load rX with the data read from input port K.

Output the value of rY to port rX.
Output the value K to port rX.

Execution jumps to address rX.
Execution jumps to address K.

Execution jumps to address rX, return address pushed to stack.
Execution jumps to address K, return address pushed to stack.

Execution jumps to address popped from stack.
Load rX with K and execution jumps to address popped from stack.

Set Zif rX and rY is zero, set Cif rX and rY has an odd number of bits set.
Set Z if rX and K is zero, set C if rX and K has an odd number of bits set.

Set Zif rX and rY is zero and last Z is set, set C if rX and rY with C has an
odd number of bits set.

Set Z if rX and K is zero and last Z is set, set C if rX and K with C has an
odd number of bits set.

Set Zif rX—rY is zero, set Cif rX—rY <O0.
Set Zif rX—Kiis zero, set Cif rXx —K < 0.

Set Zif rX—rY—Cis zero and last Zis set, set Cif rX—rY—-C<D0.
Set Zif rXx—K—Cis zeroand last Zis set, set Cif—rXx—K—C<O.

Set C.

Clear C.

VCPU 89

VCPU1/0

Each VCPU communicates with the rest of the system through 1/0 ports using the INPUT and OUTPUT
commands. There is also an input bit (IN_BIT) that can be selected for use with the SLB and SRB
commands or an IF B conditional to simplify converting a serial input stream into a word. The input and

output port addresses and functions follow.

Output Address

0x01bb

0x020b

0x0400

0x0800

0x1000

0x2000

Input Address
0x0000

0x0001

0x0002

0x001b

Function

Write to the digital outputs masked by “bb”. Bit @ of the
output data is written to Digital Output 1 if bit © of bb
is set. For example:

LOAD ro, 0xe0103
OUTPUT ro, 2

sets Digital Output 1 low and Digital Output 2 high.

Write to the VCPU output register “b”, which is reported in
the VCPU_OUTREG fields of the STATUS command.

Select IN_BIT. © = Digital Input 1, 1 = Digital Input 2,
etc.

Write to UART divider to select baud rate.
@ = 115200 baud, 1 = 57600 baud, etc.

Write a character to the UART. The character is ignored if
TX Full is set.

Write to the UART control word.

Bit 15 = UART reset.

Bits 7-4 = select digital output for serial transmit.
Bits 3-0 = select digital input for serial receive.
Function

Read digital inputs, bit @ = Digital Input 1, etc.

Read UART status.
Bit © = TX Empty

Bit 1 = TX Full
Bit 2 = RX Empty
Bit 3 = RX Full

Read a character from the UART. The result is undefined if
RX Empty is set.

Read VCPU_INREG “b>.

VCPU 90

VCPU Sample Program

The following code is an example of a VCPU program. In this implementation, a Maxim DS18520 12C
temperature sensor is connected to an LVXBias module. One LV bias line is set to 5V, and used to power
the DS18S20 Vdd pin and to drive the LVXBias DPWR pin. The DQ pin of the DS18520 is pulled up to 5V
through a 4.7k resistor, and is connected to DIO3 which is set to be an input. DIO2 is set to be an
output, and drives a MOSFET that can pull DQ to ground when DIO2 is set high.

The program sets DIO2 high to drive the I12C bus low by writing a 2 to port 0x0102. Setting DIO2 low
(writing a 0 to 0x0102) allows the 12C bus to idle high. Delay subroutines are used to meet the 12C bus
timing requirements specified in the DS18S20 datasheet. The program resets the 12C bus, and then
commands a temperature conversion to start. After a 750 ms delay, the program reads the 16 bit result
by shifting in a bit at a time from DIO3 (bit 2 of input port 0x0000). Finally, the acquired temperature
data is written to VCPU output register 0 by writing to port 0x0200, so that it will be reported by the
next STATUS command the system receives. The default GUI will display the raw VCPU output register
data (for example, a value of 51 would correspond to a measured temperature of 25.5C). A custom GUI
or other program would need to be used to properly interpret and display the results of the VCPU
program.

VCPU 91

; Example DS18S20 temperature polling VCPU program

ALIAS rl1 Port
ALIAS r2 OutReg
ALIAS r3 Timer
ALIAS r4 Timer2
ALIAS r5 Data
ALIAS r6 Count

DOUT_PORT = 0x0102
DOUT_HIGH = @

DOUT_LOW = 2
DIN_PORT = 0x0000
DIN_BIT = 4

OUTREG_PORT = 0x0200

Init:

LOAD Port, DOUT_PORT
OUTPUT Port, DOUT_HIGH
LOAD OutReg, OUTREG_PORT

MainLoop:

; Start conversion
CALL Reset

LOAD Data, @xcCC
CALL Write

LOAD Data, ox44
CALL Write

; Wait for conversion to complete (750 ms)

LOAD Timer2, 750
CALL BigSleepLoop

VCPU

92

; Fetch result

CALL Reset

LOAD Data, oxCC

CALL Write

LOAD Data, ©OxBE

CALL Write

LOAD Count, 16
ReadLoop:

SRO Data

OUTPUT Port, DOUT_HIGH
CALL Sleepl@us

OUTPUT Port, DOUT_LOW
CALL Sleep2us

OUTPUT Port, DOUT_HIGH
CALL Sleepl@us

INPUT r@, DIN_PORT
TEST r@, DIN_BIT

IF NZ OR Data, 0x8000
CALL Sleepl@@us

SUB Count, 1

IF NZ GOTO ReadLoop

; Report result
OUTPUT OutReg, Data

GOTO MainlLoop

Reset:

; Reset DS18S20

OUTPUT Port, DOUT_LOW
CALL Sleep500us

OUTPUT Port, DOUT_HIGH
CALL Sleep500us

RETURN

VCPU

93

Write:

; Write one byte to DS18520
LOAD Count, 8

WritelLoop:

OUTPUT Port, DOUT_HIGH

CALL Sleepl@us

OUTPUT Port, DOUT_LOW

CALL Sleep2us

SRO Data

IF C OUTPUT Port, DOUT_HIGH
IF NC OUTPUT Port, DOUT_LOW
CALL Sleeplo@us

OUTPUT Port, DOUT_HIGH

SUB Count, 1

IF NZ GOTO WritelLoop

RETURN

; Sleep subroutines
Sleep2us:

LOAD Timer, 99
GOTO Sleeploop

SleeplOus:
LOAD Timer, 499
GOTO Sleeploop

Sleepl0@us:
LOAD Timer, 4999
GOTO Sleeploop

Sleep500Qus:
LOAD Timer, 24999
GOTO SleeplLoop

Sleeplms:
LOAD Timer, 49999

; Shared sleep loop
Sleeploop:

SUB Timer, 1

IF NZ GOTO SleeplLoop
RETURN

; Big sleep loop (1ms per loop)
BigSleeplLoop:

CALL Sleeplms

SUB Timer2, 1

IF NZ GOTO BigSleeplLoop

RETURN

VCPU

94

Appendix A: Test Clock Configuration File

This is a complete listing of the GUI configuration file for the test clock example.

[SYSTEM]
BACKPLANE_ID=0024498A715E301C
BACKPLANE_REV=2
BACKPLANE_TYPE=1
BACKPLANE_VERSION=1.0.408
MOD1_ID=0000000000000000
MOD1_REV=0

MOD1_TYPE=0
MOD1_VERSION=0.0.0
MOD2_ID=0000000000000000
MOD2_REV=0

MOD2_TYPE=0
MOD2_VERSION=0.0.0
MOD3_ID=0131AB38BE6AFA98
MOD3_REV=2

MOD3_TYPE=1
MOD3_VERSION=1.8.379
MOD4_ID=0000000000000000
MOD4_REV=0

MOD4_TYPE=0
MOD4_VERSION=0.0.0
MOD5_ID=01399CFCC62FOA20
MOD5_REV=0

MOD5_TYPE=2
MOD5_VERSION=1.0.285
MOD6_ID=0000000000000000
MOD6_REV=0

MOD6_TYPE=0
MOD6_VERSION=0.0.0
MOD7_ID=0000000000000000
MOD7_REV=0

MOD7_TYPE=0
MOD7_VERSION=0.0.0
MOD8_ID=0000000000000000
MOD8_REV=0

MOD8_TYPE=0
MOD8_VERSION=0.0.0
MOD9_ID=0000000000000000
MODS_REV=0

MOD9_TYPE=0
MOD9_VERSION=0.0.0
MOD10_ID=0000000000000000
MOD10_REV=0

MOD10_TYPE=0
MOD10_VERSION=0.0.0
MOD11_ID=0000000000000000

Appendix A: Test Clock Configuration File

MOD11_REV=0

MOD11_TYPE=0
MOD11_VERSION=0.0.0
MOD12_TID=0000000000000000
MOD12_REV=0

MOD12_TYPE=0
MOD12_VERSION=0.0.0
MOD_PRESENT=14
POWER_ID=0000006754D4

[CONFIG]

CONSTANTO=
CONSTANTS=1
FRAMEMODE=0
LINE@=Start:
LINE1="A; X(99)"
LINE2="B; X(99)"
LINE3="C; X(99)"
LINE4="D; X(98)"
LINE5="X; GOTO Start"
LINE6=

LINECOUNT=1

LINES=7
MOD3\ENABLE1=1
MOD3\ENABLE2=0
MOD3\ENABLE3=0
MOD3\ENABLE4=0
MOD3\ENABLE5=0
MOD3\ENABLE6=0
MOD3\ENABLE7=0
MOD3\ENABLE8=0
MOD3\FASTSLEWRATE1=100
MOD3\FASTSLEWRATE2=1
MOD3\FASTSLEWRATE3=1
MOD3\FASTSLEWRATE4=1
MOD3\FASTSLEWRATE5=1
MOD3\FASTSLEWRATE6=1
MOD3\FASTSLEWRATE7=1
MOD3\FASTSLEWRATES8=1
MOD3\LABEL1=
MOD3\LABEL2=
MOD3\LABEL3=
MOD3\LABEL4=
MOD3\LABEL5=
MOD3\LABEL6=
MOD3\LABEL7=
MOD3\LABEL8=
MOD3\SLOWSLEWRATE1=1
MOD3\SLOWSLEWRATE2=1
MOD3\SLOWSLEWRATE3=1

Appendix A: Test Clock Configuration File

96

MOD3\SLOWSLEWRATE4=1

MOD3\SLOWSLEWRATE5=1

MOD3\SLOWSLEWRATE6=1

MOD3\SLOWSLEWRATE7=1

MOD3\SLOWSLEWRATE8=1

MOD5\CLAMPHIGH=0.0

MOD5\CLAMPLOW=0.0

MOD5\PREAMPGAIN=0

PARAMETERS=0

PIXELCOUNT=1

RAWENABLE=0

RAWENDLINE=0

RAWSAMPLES=0

RAWSEL=0

RAWSTARTLINE=0

RAWSTARTPIXEL=0

SAMPLEMODE=0

SHD1=0

SHD2=0

SHP1=0

SHP2=0

STATE@\CONTROL="0,0"
STATE@\MOD3="0.0,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE@\MOD5="1,0"

STATE@\NAME=Reset

STATE1\CONTROL="0,F"
STATE1\MOD3="0.0,1,90,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE1\MOD5="0,0"

STATE1\NAME=Idle

STATE2\CONTROL="2,D"
STATE2\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE2\MOD5="0,1"

STATE2\NAME=Frame

STATE3\CONTROL="4,B"
STATE3\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE3\MOD5="0,1"

STATE3\NAME=Line

STATE4\CONTROL="8,7"
STATE4\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE4\MOD5="0,1"

STATE4\NAME=Pixel

STATE5\CONTROL="0,F"
STATE5\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE5\MOD5="1,0"

STATES\NAME=Clamp

STATE6\CONTROL="0,1"
STATE6\MOD3="0.0,1,90,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE6\MOD5="0,1"

STATE6\NAME=A

STATE7\CONTROL="0,1"

Appendix A: Test Clock Configuration File

97

STATE7\MOD3="-0.25,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE7\MOD5="0,1"

STATE7\NAME=B

STATE8\CONTROL="0,1"
STATE8\MOD3="-0.75,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE8\MOD5="0,1"

STATE8\NAME=C

STATE9\CONTROL="0,1"
STATE9\MOD3="-1.5,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE9\MOD5="0,1"

STATE9\NAME=D

STATE1@\CONTROL="0,F"
STATE1le\MoD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE10\MOD5="0,1"

STATE10\NAME=X

STATES=11

TAPLINES=0

TRIGOUTFORCE=0

TRIGOUTINVERT=0

TRIGOUTLEVEL=0

TRIGOUTPOWER=0

Appendix A: Test Clock Configuration File

98

Appendix B: Basic Example Configuration File
This is a complete listing of the configuration file used to generate the sample 2 x 2 images.

[SYSTEM]
BACKPLANE_ID=0024498A715E301C
BACKPLANE_REV=2
BACKPLANE_TYPE=1
BACKPLANE_VERSION=1.0.408
MOD1_ID=0000000000000000
MOD1_REV=0

MOD1_TYPE=0
MOD1_VERSION=0.0.0
MOD2_ID=0000000000000000
MOD2_REV=0

MOD2_TYPE=0
MOD2_VERSION=0.0.0
MOD3_ID=0131AB38BE6AFA98
MOD3_REV=2

MOD3_TYPE=1
MOD3_VERSION=1.8.379
MOD4_ID=0000000000000000
MOD4_REV=0

MOD4_TYPE=0
MOD4_VERSION=0.0.0
MOD5_ID=01399CFCC62FOA20
MOD5_REV=0

MOD5_TYPE=2
MOD5_VERSION=1.0.285
MOD6_ID=0000000000000000
MOD6_REV=0

MOD6_TYPE=0
MOD6_VERSION=0.0.0
MOD7_ID=0000000000000000
MOD7_REV=0

MOD7_TYPE=0
MOD7_VERSION=0.0.0
MOD8_ID=0000000000000000
MOD8_REV=0

MOD8_TYPE=0
MOD8_VERSION=0.0.0
MOD9_ID=0000000000000000
MOD9_REV=0

MOD9_TYPE=0
MOD9_VERSION=0.0.0
MOD10_ID=0000000000000000
MOD10_REV=0

MOD10_TYPE=0
MOD10_VERSION=0.0.0
MOD11_ID=0000000000000000

Appendix B: Basic Example Configuration File

MOD11_REV=0

MOD11_TYPE=0
MOD11_VERSION=0.0.0
MOD12_TID=0000000000000000
MOD12_REV=0

MOD12_TYPE=0
MOD12_VERSION=0.0.0
MOD_PRESENT=14
POWER_ID=0000006754D4

[CONFIG]

CONSTANT®O=

CONSTANTS=1

FRAMEMODE=0

LINEO=Reset

LINE1=

LINE2=# Wait for frames to be requested (Count greater than ©). Clamp
ADC inputs while idle.
LINE3=Start:

LINE4="Idle; X(100)"

LINE5="Clamp; X(2000)"
LINE6="Idle; X(100)"

LINE7="Idle; IF !Count GOTO Start"
LINE8=

LINES=# Start a frame

LINE1@=Frame

LINE1l=

LINE12=# First line

LINE13=Line

LINE14="Idle; CALL BlackPixel"
LINE15="Idle; CALL DarkPixel"
LINE16="Idle; X(100)"
LINE17="Clamp; X(2000)"
LINE18="Idle; X(100)"

LINE19=

LINE20=# Second line

LINE21=Line

LINE22="Idle; CALL MedPixel"
LINE23="Idle; CALL BrightPixel"
LINE24="Idle; X(100)"
LINE25="Clamp; X(2000)"
LINE26="Idle; X(100)"

LINE27=

LINE28=# Decrement the number of frames and return to the main loop
LINE29="Idle; GOTO Start; Count--"
LINE30=

LINE31=# Individual pixel timing subroutines with various intensities
LINE32=BlackPixel:

LINE33=Pixel

LINE34="A; X(1020)"

Appendix B: Basic Example Configuration File 100

LINE35="X; RETURN BlackPixel"
LINE36=
LINE37=DarkPixel:
LINE38=Pixel
LINE39="A; X(509)"
LINE40="B; X(510)"
LINE41="X; RETURN DarkPixel"
LINE42=
LINE43=MedPixel:
LINE44=Pixel
LINE45="A; X(509)"
LINE46="C; X(510)"
LINE47="X; RETURN MedPixel"
LINE48=
LINE49=BrightPixel:
LINE50=Pixel
LINE51="A; X(509)"
LINE52="D; X(510)"
LINE53="X; RETURN BrightPixel"
LINE54=

LINECOUNT=2

LINES=55
MOD3\ENABLE1=1
MOD3\ENABLE2=0
MOD3\ENABLE3=0
MOD3\ENABLE4=0
MOD3\ENABLE5=0
MOD3\ENABLE6=0
MOD3\ENABLE7=0
MOD3\ENABLE8=0
MOD3\FASTSLEWRATE1=100
MOD3\FASTSLEWRATE2=1
MOD3\FASTSLEWRATE3=1
MOD3\FASTSLEWRATE4=1
MOD3\FASTSLEWRATE5=1
MOD3\FASTSLEWRATE6=1
MOD3\FASTSLEWRATE7=1
MOD3\FASTSLEWRATE8=1
MOD3\LABEL1=
MOD3\LABEL2=
MOD3\LABEL3=
MOD3\LABEL4=
MOD3\LABEL5=
MOD3\LABEL6=
MOD3\LABEL7=
MOD3\LABEL8=
MOD3\SLOWSLEWRATE1=1
MOD3\SLOWSLEWRATE2=1
MOD3\SLOWSLEWRATE3=1
MOD3\SLOWSLEWRATE4=1

Appendix B: Basic Example Configuration File

101

MOD3\SLOWSLEWRATES=1

MOD3\SLOWSLEWRATE6=1

MOD3\SLOWSLEWRATE7=1

MOD3\SLOWSLEWRATE8=1

MOD5\CLAMPHIGH=0.0

MOD5\CLAMPLOW=0. 0

MOD5\PREAMPGAIN=0

PARAMETER®="Count=1"

PARAMETERS=1

PIXELCOUNT=2

RAWENABLE=1

RAWENDLINE=1

RAWSAMPLES=2048

RAWSEL=0

RAWSTARTLINE=0

RAWSTARTPIXEL=0

SAMPLEMODE=0

SHD1=600

SHD2=900

SHP1=100

SHP2=400

STATE@\CONTROL="0,0"
STATE@\MOD3="0.0,1,90,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE@\MOD5="1,0"

STATE@\NAME=Reset

STATE1\CONTROL="0,F"
STATE1\MOD3="0.0,1,90,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE1\MOD5="0,0"

STATE1\NAME=Idle

STATE2\CONTROL="2,D"
STATE2\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE2\MOD5="0,1"

STATE2\NAME=Frame

STATE3\CONTROL="4,B"
STATE3\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE3\MOD5="0,1"

STATE3\NAME=Line

STATE4\CONTROL="8,7"
STATE4\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE4\MOD5="0,1"

STATE4\NAME=Pixel

STATE5\CONTROL="0,F"
STATE5\MOD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE5\MOD5="1,0"

STATES\NAME=Clamp

STATE6\CONTROL="0,1"
STATE6\MOD3="0.0,1,90,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE6\MOD5="0,1"

STATE6\NAME=A

STATE7\CONTROL="0,1"

Appendix B: Basic Example Configuration File

102

STATE7\MOD3="-0.25,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE7\MOD5="0,1"

STATE7\NAME=B

STATE8\CONTROL="0,1"
STATE8\MOD3="-0.75,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE8\MOD5="0,1"

STATE8\NAME=C

STATE9\CONTROL="0,1"
STATE9\MOD3="-1.5,1,9,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE9\MOD5="0,1"

STATE9\NAME=D

STATE10\NAME=X

STATE18\CONTROL="0,F"
STATE1le\MoD3=",1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1,,1,1"
STATE10\MOD5="0,1"

STATES=11

TAPLINE@="AD1L, 1.0, 100"

TAPLINES=1

TRIGOUTFORCE=0

TRIGOUTINVERT=0

TRIGOUTLEVEL=0

TRIGOUTPOWER=0

Appendix B: Basic Example Configuration File

103

