
Linear WFA Notes

Max Varverakis

July 2023

1 Ez

RadialPart =

∫ ∞

0

R(r′)g0(r, r
′)r′dr′ (1)

g0(r, r
′) = 4π [I0(kpr)K0(kpr

′)Θ(r′ − r) + I0(kpr
′)K0(kpr)Θ(r − r′)] (2)

R(r′) =
1 r′ < σr

0 r′ > σr
(3)

What do we mean? . . .
r is the point where we observe the field
r′ is the point where the charge is located
R(r′) is the distribution of charges
If we observe the field at location r > σr, this means that we “see” all the

beam charge as within our observation point.

RadialPartr>σr =

∫ σr

0

4πI0(kpr
′)K0(kpr)r

′dr′ (4)

= 4πr′I1(kpr
′)K0(kpr)

∣∣∣σr

0

= 4πσrI1(kpσr)K0(kpr)

because Θ(r− r′) = 1 for all r > σr > r′. So the radial component of Ez comes
out to:

Ez(r>σr
) = 4πσrI1(kpσr)K0(kpr) (5)
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For r < σr, we have a contribution from both parts of Eqn. 2:

4π

kp

∫ σr

0

[I0(kpr)K0(kpr
′)Θ(r′ − r) + I0(kpr

′)K0(kpr)Θ(r − r′)] kpr
′dr′ (6)

1. r′ < r invokes the term attached to Θ(r − r′):∫ r

0

I0(kpr
′)K0(kpr)kpr

′dr′ = kpr
′I1(kpr

′)K0(kpr)
∣∣∣r
0

= kprI1(kpr)K0(kpr) (7)

2. r′ > r invokes the term attached to Θ(r′ − r):∫ σr

r

I0(kpr)K0(kpr
′)kpr

′dr′ = −kpr
′I0(kpr)K1(kpr

′)
∣∣∣σr

r

= kprI0(kpr)
[
K1(kpr)−

σr

r
K1(kpσr)

]
(8)

Integrals were carried out using the identities listed in Sec. 4.

Plugging both integrals back into Eqn. 6 gives

Ez(r<σr ) = 4πr
[
I1(kpr)K0(kpr) + I0(kpr)

(
K1(kpr)−

σr

r
K1(kpσr)

)]
(9)

2 Er

For the radial electric field, we have a Green’s function

g1(r, r
′) =4π [I1(kpr)K1(kpr

′)Θ(r′ − r) + I1(kpr
′)K1(kpr)Θ(r − r′)] (10)

=⇒ Er(r) =

∫ ∞

0

r′
∂

∂r
R(r′)g1(r, r

′)dr′

= −
∫ ∞

0

r′δ(r − σr)g1(r, r
′)dr′

= −
∫ ∞

0

r′δ(r − σr) [I1(kpr)K1(kpr
′)Θ(r′ − r) + I1(kpr

′)K1(kpr)Θ(r − r′)] dr′

= −4πσr [I1(kpr)K1(kpσr)Θ(σr − r) + I1(kpσr)K1(kpr)Θ(r − σr)]
(11)

Thus, we have the following solution for the radial electric field depending
on r:

1. r < σr invokes the term attached to Θ(σr − r):

Er(r<σr
) = −4πσrK1(kpσr)I1(kpr) (12)

2. r > σr invokes the term attached to Θ(r − σr):

Er(r>σr ) = −4πσrI1(kpσr)K1(kpr) (13)
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3 Comparison to HiPACE++

Note that the plasma density ρ in HiPACE++ should be normalized to e · n1

whereas the plasma density from analysis only requires normalization to n1.

3.1 Gaussian Beam

For the plots below, the number of electrons in the beam is Nb = 4× 107.

3.1.1 No Witness Beam

Figure 1: Plasma density from HiPACE++ simulation for a Gaussian beam.
Analytical solution line-outs are overlaid in red.
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Figure 2: Normalized Ez from HiPACE++ simulation for a Gaussian beam.
Analytical solution line-outs are overlaid in red.

Figure 3: Normalized Er from HiPACE++ simulation for a Gaussian beam.
Analytical solution line-outs are overlaid in red. The longitudinal distribution
is off-axis. Gray dashed lines indicate off-axis line out locations.
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Figure 4: Bϕ (By) from HiPACE++ simulation for a Gaussian beam. Analytical
solution line-outs are overlaid in red. The longitudinal distribution is off-axis.
Gray dashed lines indicate off-axis line out locations.

Figure 5: Energy density from HiPACE++ simulation for a Gaussian beam.
Analytical solution line-outs are overlaid in red.
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3.1.2 Witness Beam Loaded

Figure 6: Plasma density from HiPACE++ simulation for two Gaussian beams.
Analytical solution line-outs are overlaid in red.
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Figure 7: Normalized Ez from HiPACE++ simulation for two Gaussian beams.
Analytical solution line-outs are overlaid in red.

Figure 8: Normalized Er from HiPACE++ simulation for two Gaussian beams.
Analytical solution line-outs are overlaid in red. The longitudinal distribution
is off-axis. Gray dashed lines indicate off-axis line out locations.
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Figure 9: Bϕ (By) from HiPACE++ simulation for two Gaussian beams. An-
alytical solution line-outs are overlaid in red. The longitudinal distribution is
off-axis. Gray dashed lines indicate off-axis line out locations.

Figure 10: Energy density from HiPACE++ simulation for two Gaussian beams.
Analytical solution line-outs are overlaid in red.
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3.2 Heaviside Beam

For the plots below, the number of electrons in the beam isNb = 3.9972510×107.

3.2.1 No Witness Beam

Figure 11: Plasma density from HiPACE++ simulation for a step-function
beam. Analytical solution line-outs are overlaid in red. Gray dashed lines
indicate off-axis line out locations.
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Figure 12: Normalized Ez from HiPACE++ simulation for a step-function
beam. Analytical solution line-outs are overlaid in red.

Figure 13: Normalized Er from HiPACE++ simulation for a step-function
beam. Analytical solution line-outs are overlaid in red. The longitudinal distri-
bution is off-axis. Gray dashed lines indicate off-axis line out locations.
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Figure 14: Bϕ (By) from HiPACE++ simulation for a step-function beam.
Analytical solution line-outs are overlaid in red. The longitudinal distribution
is off-axis. Gray dashed lines indicate off-axis line out locations.

Figure 15: Energy density from HiPACE++ simulation for a step-function
beam. Analytical solution line-outs are overlaid in red.
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3.2.2 Witness Beam Loaded

Figure 16: Plasma density from HiPACE++ simulation for two step-function
beams. Analytical solution line-outs are overlaid in red. Gray dashed lines
indicate off-axis line out locations.
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Figure 17: Normalized Ez from HiPACE++ simulation for two step-function
beams. Analytical solution line-outs are overlaid in red.

Figure 18: Normalized Er from HiPACE++ simulation for two step-function
beams. Analytical solution line-outs are overlaid in red. The longitudinal dis-
tribution is off-axis. Gray dashed lines indicate off-axis line out locations.

13



Figure 19: Bϕ (By) from HiPACE++ simulation for two step-function beams.
Analytical solution line-outs are overlaid in red. The longitudinal distribution
is off-axis. Gray dashed lines indicate off-axis line out locations.

Figure 20: Energy density from HiPACE++ simulation for two step-function
beams. Analytical solution line-outs are overlaid in red.
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4 Modified Bessel Function Identities

d

dx
[xνIν(x)] = xνIν−1(x) (14)

d

dx
[xνKν(x)] = −xνKν−1(x) (15)
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