Initial characterization of 3D-DDTC detectors with ATLAS Pixel readout chip

B. Di Girolamo, D. Dobos, A. La Rosa, H. Pernegger (CERN – PH)

3D ATLAS General Meeting – CERN Jan. 9, 2009.

On bench measurement

- Recently started to do measurements on 3D-DDTC Silicon Sensor:
 - Leakage currents
 - Threshold scan (threshold and noise measurements)
 - Noise vs bias voltage
 - Calibration and first source test with 241Am source

M. Boscardin (FBK-irst) G.F. Dalla Betta (UniTN&INFN-TN)

DDTC on p-type substrate Structure with 2,3 and 4 electrodes per pad

Sensor type	Distance (μm)
2E	103
3E	71
4E	56

Thickness 220um Column overlap ~ 100 um Depletion voltage ~ 11V

	Detector	Measurements		
	$2\mathrm{EM2}$	$I_{Leakage}$, Threshold scan; Noise vs HV; source		
	$2\mathrm{EM4}$	$I_{Leakage}$		
1) [2EM6	$I_{Leakage}$; Threshold scan; Noise vs HV; source		
	3EM1	$I_{Leakage}$		
	3EM5	$I_{Leakage}$; Threshold scan; Noise vs HV; source		
	3EM7	$I_{Leakage}$; Threshold scan; Noise vs HV; source		
[4EM3	$I_{Leakage}$; Threshold scan; Noise vs HV; source		
	4EM8	$I_{Leakage}$; Threshold scan; Noise vs HV; source		
	4EM9	$I_{Leakage}$; Threshold scan; Noise vs HV; source		

Contribution to measurements: N. Darbo, G. Gariano, A. Rovani, E. Riuscino / INFN-Genova

Pixel Lab at Bat. 161

The Lab is operated as semi-clean room with safety precaution for cleanliness and radiation zone

PIXEL TEST STATION (based on Turbo DAQ system)

✓ with SOURCE:

- Climate chamber (-25÷100 °C) + Liquid cooling
- Source : a) Am 60KeV self triggered for calibration
 b) Sr90 trigger independently triggered
 by scintillator (working in progress)

✓ for calibration and front-end electronic test
 - mobile system, on-loan from INFN/Genova

Single-chip assembly

3D-DDTC sensors are bump bonded on ATLAS FE-I3 readout chip.

Overall chip architecture:

-Standard 0.25um CMOS technology -2880 readout cells of 50um x 400um -18x160 matrix

Each readout cell:

Analog block where the sensor charge is amplified and compared to a programmable threshold by a discriminator;

Digital readout part transfers the hit pixel address, a hit time stamp and a digitized amplitude information, the ToT to buffers at the chip periphery.

Preamplifier and discriminator shape

Time over Threshold (length of discriminator signal) depends on:

- deposited charge
- discriminator threshold
- feedback current

Information of the ToT (in unit of 25 ns) is read out together with the hit information

1/9/09

Leakage currents

Monleak \rightarrow leakage current for each pixel in DAC unit (1 DAC = 125pA) $\langle I_{leak} \rangle = 1.43$ DAC unit $\rightarrow \langle I_{leak} \rangle \sim 179$ pA

Per chip → 179pA x 2880 = 0.52 uA

A. La Rosa / CERN PH-DT

Threshold scan

Performed to measure the threshold and noise of each pixel

- A voltage pulse is injected into the injection capacitor (eg Clow).
- The input amplifier see a signal of Vpulse x Clow.
- 100 digital injection are performed for each pxl and each injected charge value between 0e- and 9000ein several steps.
- The num. of collected hits for each pxl and each injected charge is recorded.

\rightarrow Measure reesponse (hit/injection).

- Response fuction: convolution of ideal step function and Gaussian pxl noise distribution \rightarrow error fuction.
- Fit gives threshold and noise value.

FE Tuned with Th=3k2e- and 60 ToT @ 20ke-

2EM2 Noise distribution Constant 521.5 500 202.3 Mean Sigma 8.959 400 E 300

3D-DDTC

0	3600 3800 4000 Threshold (e)	200 - 100 - 100 - 140 160	180 200 220 240	260 280 Noise (e)
e)	$\sigma(Th)$ (e)	<n> (e)</n>	$\sigma(N)$ (e)	HV (V)
	58.6	202.3	8.96	-35
	49.57	199.4	9.55	-35
	42.02	206.6	8.29	-35

	Detector	$\langle Th \rangle$ (e)	$\sigma(Th)$ (e)	<n> (e)</n>	$\sigma(N)$ (e)	HV(V)
	3D-2EM2	3200	58.6	202.3	8.96	-35
	3D-2EM6	3281	49.57	199.4	9.55	-35
	3D-3EM5	3318	42.02	206.6	8.29	-35
Ĩ	3D-3EM7	3302	53.37	244.9	9.80	-35
	3D-4EM3	3284	41.27	229.8	9.87	-25
Ĩ	3D-4EM8	3314	70.11	232.7	12.32	-35
	3D-4EM9	3294	56.08	225.9	10.65	-35
	3D-3EG	3241	64.48	291.7	13.03	-35
	ATLASnn	3259	42.96	125.9	16.23	-150

SAME SETUP

Noise vs bias voltage

Measurements at CERN setup (climate chamber) 20 °C and relative humidity of 12%.

Self-ToT calibration

Performed to determine the charge dependence of the ToT values for each pixel *Procedure and algorithms described in ATLAS Project Document No: ATL-IP-QP-0144*

It injects a different charges above the threshold and measures the average ToT

ToT tuned with 60 ToT @ 20ke-

Detector	<tot></tot>	$\sigma(\text{ToT})$	HV (V)
3D-2EM2	61.99	1.564	-35
3D-2EM6	59.4	2.049	-35
3D-3EM5	61.9	1.833	-35
3D-3EM7	59.07	1.946	-35
3D-4EM3	61.8	1.777	-25
3D-4EM8	59	2.177	-35
3D-4EM9	59.4	2.049	-35
3D-3EG	60.74	2.703	-35

SAME SETUP

Source test

Preliminary measurement with 241 Am

Source test

Preliminary measurement with 241Am source in comparison with ATLAS Pixel full module

and Stanford 3D sensor

Spectrum as a sum over all pixel without any clustering

Outlook

- We've just started to look at 3D-DDTC sensors too early for a summary !
- Part of the activities has been already presented in several conference and workshops: RESMDD08; IEEE; ATUW-Nikhef; RD50 Workshop; INFN Meeting: Atlas and CMS Upgrade for S-LHC.
- The performance of the 3D-DDTC have been studied by measuring:
 - Leakage currents
 - Threshold scan (threshold and noise measurements)
 - Noise versus bias voltage
 - Calibration and first source test with 241Am source $\star \star \star \star \star$

(A note on this study is going to be prepared)

- 9 detectors have been tested: one of them (3EM1) has showed problem in IV scan (breakdown ~ -10V), while one (2EM4) has presented problems in the FE calibration.
- Many thanks to M. Boscardin (FBK-irst), G.F. Dalla Betta (UniTN&INFN-Trento) and N. Darbo, G. Gariano, A. Rovani, E.Ruscino (INFN- Genova) for their kind cooperation in the detector understanding and measurements.

Outlook

- Present/Future interest:
 - Study of detector behavior in terms of noise and threshold:
 - Using the same setups
 - Before and after irradiation
 - Warm and cold measurements
 - Strongly support testbeam activity:
 - Device preparation and characterization before testbeam
 - Data taking
 - Data analysis