
MATLAB GUI Tutorial
Using App Designer and Object-Oriented Programming

Sharon Perez
June 2024

https://drive.google.com/drive/folders/12-y1bGFEUJgvN0v_cEUzJf08U2XhFinV?usp=sharing

Experimental Physics and Industrial Control System (EPICS)

• EPICS allows users to interact (read/write) with components of the accelerator

• Helpful links for more information:

• EPICS website: https://epics-controls.org/about-epics/

• US Particle Accelerator School (USPAS): https://controlssoftware.sns.ornl.gov/training/2022_USPAS/

2

https://epics-controls.org/about-epics/
https://controlssoftware.sns.ornl.gov/training/2022_USPAS/

Experimental Physics and Industrial Control System (EPICS)

• Process Variable (PV): a piece of data with attributes,
assigned a name

• e.g., the power status of a camera, or the name
of a motor

• Can “get” and “put” values via MATLAB command
line:

>> lcaGet(‘CAMR:LI20:100:NAME’)

ans =

 1x1 cell array

 {‘SYAG’}

• EDM (Extensible Display Manager) provides an
interface to view and monitor PVs

• Launch FACET Home Screen:

• >> facethome &

3

Experimental Physics and Industrial Control System (EPICS)

In this tutorial, we will be plotting the following
PVs:

• SIOC:SYS1:ML00:AO951

• SIOC:SYS1:ML00:AO952

FACET Home Screen > Physics Apps > Matlab
PVs … > Matlab Support PVs … > ML00 951-000

4

Launching MATLAB
• Open FastX

• Launch a desktop session

• Open a terminal

• >> ssh –Y mcclogin

• >> ssh fphysics@facet-srv01

• Select your profile

• >> cd git_work/matlabTNG

• >> matlab2020a &

Helpful Confluence links:

https://confluence.slac.stanford.edu/display/SCSPub/FastX

https://confluence.slac.stanford.edu/display/FACET/Matlab+2020

7

https://confluence.slac.stanford.edu/display/SCSPub/FastX
https://confluence.slac.stanford.edu/display/FACET/Matlab+2020

Step 1: Create app and its visual components
• Open “Examples” folder

• Start by launching App Designer:

• >> appdesigner

• Create a new Blank App

• Drag and drop the following
components from the
Component Library on the left:

• Label

• Gauge (or 90 Degree Gauge, or
Semicircular Gauge) (2)

• Axes

• Drop Down

• Button

Step 1: Create app and its visual components
• Toggle between "Design View" and "Code View" to

see the code that was autogenerated when you
dragged the components onto the canvas

• Note that the code is grayed out, which means it
cannot be edited

• Edit the app as desired. Suggested changes:

• Change the title of the app

• Label one of the gauges "PV1" and the other
"PV2"

• Change the limits of the gauges to [0,1]

• Title the plot ”MATLAB PVs over time"

• Change the drop-down options to "PV1" and
"PV2"

• Edit the button text to say "Close App"

Step 2: Create a "GUI support" class definition

App Designer

• It is possible to program the entire app in App Designer, but as the app grows, the code becomes hard to maintain

App Designer + Support Class

• Organize the code into separate components with different roles

• More control over structure of the code

• Improved development, testing, and collaboration

Why use a GUI support class?

Step 2: Create a "GUI support" class definition

Why use a GUI support class?

GUI support class

Step 2: Create a "GUI support" class definition
• Open the template “AppSupportTemplate.m” containing a class definition with the following syntax:

classdef (Attributes) ClassName < SuperclassNames

 properties (Attributes) ... end

 methods (Attributes) ... end

 events (Attributes) ... end

end

• Classes allow us to create objects for use in object-oriented programming

• This "GUI support" class definition will store and manage the application data

• It will also communicate with the app to make updates when data changes occur

Step 2: Create a "GUI support" class definition
• The class needs to inherit from the Superclass "handle"

classdef (Attributes) ClassName < handle

• For more information on the handle superclass, refer to: https://www.mathworks.com/help/matlab/ref/handle-
class.html

• For more general information about MATLAB classes, refer to:
https://www.mathworks.com/help/matlab/object-oriented-programming.html

https://www.mathworks.com/help/matlab/ref/handle-class.html
https://www.mathworks.com/help/matlab/ref/handle-class.html
https://www.mathworks.com/help/matlab/object-oriented-programming.html

• Properties contain data that is important
and relevant to the object

• Can be public or private, constant,
dependent on other values

The template has the following properties:

properties (Constant)

numPlotPts = 50;

end

properties

pvlist PV

pvs

guihan

plotOptionState

% Add a property that stores application data here

end

Properties

Step 2a: Add properties, events, and listeners

• Events are broadcast when an action or change occurs to the object

• Listeners execute a callback when the event is triggered

Event defined in the template:

events

PVUpdated

end

Listener defined in the template:

properties (Hidden)

listeners

end

Events and Listeners

Step 2a: Add properties, events, and listeners

Update
to PV

Event
triggered

Listener
notified

Callback
is

executed

Step 2b: Create a constructor method
• The constructor method creates an instance of the class

• It can also initialize property values and call other methods

• For more information about constructor methods: https://www.mathworks.com/help/matlab/matlab_oop/class-
constructor-methods.html

https://www.mathworks.com/help/matlab/matlab_oop/class-constructor-methods.html
https://www.mathworks.com/help/matlab/matlab_oop/class-constructor-methods.html

Step 2b: Create a constructor method
methods

function obj = AppSupportTemplate(apphandle)

% Initialize object and add PVs to be monitored

context = PV.Initialize(PVtype.EPICS);

obj.pvlist = [… % Associates PV with App component

PV(context,'name',"GaugePV1",'pvname',"SIOC:SYS1:ML00:A0951",'mode',"rw",

'monitor',true,'guihan',apphandle.PV1Gauge);

% Add the second PV here];

pset(obj.pvlist,'debug',0);

obj.pvs = struct(obj.pvlist);

obj.guihan = apphandle;

Step 2b: Create a constructor method
% Create arrays to store the PV values to be plotted at each time stamp. Use the

property numPlotPts, and store both arrays in the data property you defined

above. Add your code here:

% Set the initial state of the app to “Waiting for Input”

obj.data.plotOpt = "Waiting For Input";

% Start listening for PV updates

obj.listeners = addlistener(obj,'PVUpdated',@(~,~) obj.loop);

run(obj.pvlist,false,0.1,obj,'PVUpdated');

end

Step 2c: Create a loop method
• Create a function that the script loops through every time the PVs are updated

• Make sure that the data stays updated

• Ignore the switch in the template for now– we will fill this in later

Step 2c: Create a loop method
function loop(obj)

PV1_val = obj.pvs.GaugePV1.val{1};

PV2_val = obj.pvs.GaugePV2.val{1};

% Assign each variable to the last value in its respective PV array:

% Use “circshift” to shift the values in the arrays to the left:

end

Step 2d: Create a "stop" method
• The template defines a method that stops the PV objects from updating

function clearPV(obj)

Cleanup(obj.pvlist);

stop(obj.pvlist);

end

Step 3: Connect App file to GUI support file
• In the App Designer file, go to "Code View"

• Create a new property for the app object

properties (Access = private)

aobj

end

Step 3: Connect App file to GUI support file
• Create a startup function and create an instance of the GUI support object

• On the left-hand side in the "CODE BROWSER" panel, click on the "+" button to add a startup function callback

function startupFcn(app)

app.aobj = AppSupportTemplate(app);

end

Step 3: Connect App file to GUI support file
• Additionally, add a Close Request function

function UIFigureCloseRequest(app,event)

try

app.aobj.clearPV();

catch

delete(app);

end

delete(app)

end

Step 4: Add callbacks
• On the right-hand side in the "COMPONENT BROWSER" panel, right click on the Close App button and add a

callback

• Call the Close Request function

function CloseButtonPushed(app,event)

app.UIFigureCloseRequest()

end

Step 4: Add callbacks
• On the right-hand side in the "COMPONENT BROWSER" panel, right click on the Drop-Down and add a callback

• When the user chooses an option from the Drop-Down menu, the callback should send a command to the GUI
support file

• The App should tell the GUI support object to "do something," and the object should store/update the new
state of the App

• If the user chooses "PV1," the GUI support object should update the current state to "PV1" and plot the values
for PV1

• If the user chooses "PV2," the GUI support object should update the current state to "PV2" and plot the values
for PV2

Step 4: Add callbacks
• In the GUI support file, add functions that update the state of the object (Plot Option State) if a new Drop-Down

option is selected by the user

function % Name your function

cla(obj.guihan.UIAxes);

% Add your code here:

end

• Repeat for PV2

Step 4: Add callbacks
• In the App file, add a switch to the Drop-Down callback

function PVDropDownValueChanged(app,event)

value = app.PVDropDown.Value;

switch value

case 'PV1’

% Add your function from the last part here

case 'PV2’

% Add your function from the last part here

end

end

Step 4: Add callbacks
• In the GUI support file, add a switch to the loop method

function loop(obj)

PV1_val = obj.pvs.GaugePV1.val{1};

PV2_val = obj.pvs.GaugePV2.val{1};

% Assign each variable to the last value in its respective PV array:

% Done in Part 2c

switch % Switch variable here

case % Case where PV1 is chosen

% Plot PV1 values here

drawnow

Step 4: Add callbacks
case % Case where PV2 is chosen

% Plot PV2 values here

drawnow

otherwise

% Do nothing. This case is only true when the app is first launched, and the

state is “Waiting for Input”

end

% Use “circshift” to shift the values in the arrays to the left:

% Done in Part 2c

end

Run your app!

Summary
• App Designer is a great tool to make GUIs in Matlab

• Use a support class ("the model") for better organization and improved development, testing, and collaboration

• Use callbacks to make your GUI interactive

SECTION TITLE AND/OR DEPARTMENT 32

	Slide 1
	Slide 2: Experimental Physics and Industrial Control System (EPICS)
	Slide 3: Experimental Physics and Industrial Control System (EPICS)
	Slide 4: Experimental Physics and Industrial Control System (EPICS)
	Slide 7: Launching MATLAB
	Slide 8: Step 1: Create app and its visual components
	Slide 9: Step 1: Create app and its visual components
	Slide 10: Step 2: Create a "GUI support" class definition
	Slide 11: Step 2: Create a "GUI support" class definition
	Slide 12: Step 2: Create a "GUI support" class definition
	Slide 13: Step 2: Create a "GUI support" class definition
	Slide 14: Step 2a: Add properties, events, and listeners
	Slide 15: Step 2a: Add properties, events, and listeners
	Slide 16: Step 2b: Create a constructor method
	Slide 17: Step 2b: Create a constructor method
	Slide 18: Step 2b: Create a constructor method
	Slide 19: Step 2c: Create a loop method
	Slide 20: Step 2c: Create a loop method
	Slide 21: Step 2d: Create a "stop" method
	Slide 22: Step 3: Connect App file to GUI support file
	Slide 23: Step 3: Connect App file to GUI support file
	Slide 24: Step 3: Connect App file to GUI support file
	Slide 25: Step 4: Add callbacks
	Slide 26: Step 4: Add callbacks
	Slide 27: Step 4: Add callbacks
	Slide 28: Step 4: Add callbacks
	Slide 29: Step 4: Add callbacks
	Slide 30: Step 4: Add callbacks
	Slide 31: Run your app!
	Slide 32: Summary

