Diffuse gamma-ray Emission Cosmic-Ray Acceleration, Propagation, and Emission

Tim Linden – Fermi Summer School, 2023

Overview

SNP p,e⁻ Sun P

Cosmic-Ray Acceleration

- First Order Fermi Acceleration

- Charged particles moving in an outgoing shock front
- Reflected by stationary turbulence in ISM -> energy gain
- Re-enter shock front and reflect -> more energy gain!

$$rac{dN(\epsilon)}{d\epsilon} \propto \epsilon^{-p}$$

- <u>Second order Fermi acceleration</u>

- Similar to 1st Order Fermi acceleration, but particle is in the ISM and bounces off of randomly moving shocks.
- More bounces with incoming clouds -> net energy gain
- Second order in energy gain per collision (due to bounces off of retreating clouds)

tgoing shock front in ISM -> energy gain > more energy gain!

eration, but particle is in lomly moving shocks. buds -> net energy gain collision (due to

Cosmic-Ray Acceleration - Not Stars

- The maximum energy of first-order Fermi acceleration depends on the magnetic field strength and the shock velocity:

$$E_{\rm max} \simeq \alpha \left(\frac{n_{\rm ISM}}{{\rm cm}^{-3}}\right)^{\frac{1}{2}} \left(\frac{v_{\rm sh}}{10^3~{\rm km~s}^{-1}}\right)^2 \left(\frac{R_{\rm sh}}{{\rm pc}}\right)~{\rm GeV}$$

- With $\alpha \sim 10^3$
- For the Sun (coronal mass ejection) $- n_{ISM} = 10^8 \text{ cm}^{-3}$
 - $-v_{sh} = 200 \text{ km s}^{-1}$
 - $-R_{sh} = 100 R_{\odot}$

$$E_{max}$$

Which gives us an energy around 1 GeV:

 $_{max} = 10^3 \times 10^4 \times 0.2^2 \times 2.5 \times 10^{-6} \approx 1 \text{ GeV}$

Supernova Remnants

- The maximum energy of first-order Fermi acceleration depends on the magnetic field strength and the shock velocity:

$$E_{\rm max} \simeq \alpha \left(\frac{n_{\rm ISM}}{{\rm cm}^{-3}}\right)^{\frac{1}{2}} \left(\frac{v_{\rm sh}}{10^3~{\rm km~s}^{-1}}\right)^2 \left(\frac{R_{\rm sh}}{{\rm pc}}\right)~{\rm GeV}$$

- With $\alpha \sim 10^3$
- For a supernova remnant:
 - $-n_{ISM} = 10^0 \text{ cm}^{-3}$
 - $-v_{sh} = 10^4 \text{ km s}^{-1}$
 - $-R_{sh} = 10 \text{ pc}$

Which gives us an energy around 1 GeV:

$E_{max} = 10^3 \times 1 \times 10^2 \times 10 = 1 \text{ PeV}$

Pulsars/Pulsar Wind Nebulae

- Critical e+e- creation point is the pulsar magnetosphere.
 - ▶1.) Electrons "boiled" off the pulsar surface, and accelerated to TeV-PeV energies.

2.) Synchrotron emission produces e⁺e⁻ pairs which then cascade to produce a high e+emultiplicity.

 x/R_{LC} x/R_{LC} $x/R_{\rm LC}$ $x/R_{\rm LC}$ $x/R_{\rm LC}$ $x/R_{\rm LC}$ \mathbb{R}_{L} $x/R_{\rm LC}$ $x/R_{\rm LC}$ x/R_{LC} $|R_{LC}|$ $z/R_{\rm LC}$ $x/R_{
m LC}$ $x/R_{\rm LC}$ $x/R_{\rm LC}$

Pulsars/Pulsar Wind Nebulae

Blandford & Ostriker (1978) Hoshino et al. (1992) Coroniti (1990) Sironi & Spitkovsky (2011)

• PWN termination shock: •Voltage Drop > 30 PV •e+e- energy > 1 PeV (known from synchrotron)

• Resets e⁺e⁻ spectrum.

•Many Possible Models:

- Ist Order Fermi-Acceleration
- Magnetic Reconnection
- Shock-Driven Reconnection

Cosmic-Ray Transport

Source term - inhomogeneous term of PDE

• Diffusion:

•Kolmogorov: $D \propto E^{-1/3}$

•Kraichnan: $D \propto E^{-1/2}$

•Reacceleration: Diffusion in momentum space

Latex by Isabelle John

Cosmic-Ray Transport

- gas from the Milky Way
- Energy Losses: (Next Section)
- •Fragmentation: Nuclei can be split by interactions
- Radioactive Decay: For radioactive nuclei

Latex by Isabelle John

• Convection: Winds driven by injection of cosmic-rays and relativistic

Note About Scales

• Gyroradius of particles in a magnetic field is small:

$$r_g/\mathrm{meter}=3.3$$

"Stepsize" of particles diffusing through the Milky Way is large:

•
$$D \approx 3 \times 10^{28} \frac{\text{cm}^2}{\text{s}} \rightarrow l = \frac{D}{c} = \frac{D}{3 \times 10^{10} \text{ cm s}^{-1}} = 10^{18} \text{ cm} = 0.3 \text{ pc}$$

 On small scales - particles are locked into the preferential direction of the local field.

$$imes rac{(\gamma mc^2/{
m GeV})(v_\perp/c)}{(|q|/e)(B/{
m Tesla})}$$

Leaky Box Model

 Cosmic-Rays produced in the thin disk, and diffuse until they leave the thick disk (halo)

•Thin Disk is ~100 pc •Thick disk is ~5 kpc Radius of Milky Way is ~20 kpc

Η Disk escape

Leaky Box Model

 Cosmic-Rays produced in the thin disk, and diffuse until they leave the thick disk (halo)

Residence time: ~10 Myr

-1/3E 1GeV -1/3Interaction probability: ~10 Myr σ_{pp} $\left(\frac{u_{max}}{V_{halo}}\right) \left(\frac{1 \text{GeV}}{1 \text{GeV}}\right)$ E

Calorimetry

- Fraction of cosmic-rays the leaving the medium.
- Calorimetric fraction of 1 means that cosmic-rays undergo one e-fold of interactions.
- Milky Way Average cosmic ray proton has calorimetric fraction of 0.1
- Star-forming Galaxy (e.g., NGC 253) calorimetric fraction >1.

Fraction of cosmic-rays that have an interaction before

Primary Cosmic Rays

Primary cosmic rays are those that are produced in the final stages of stellar evolution, and thus efficiently accelerated in supernova explosions/ SNR

H/He/C/O/Ne/Si/Fe

CNO cycle)

Local Spectrum: $E^{-p-\delta} = E^{-2.X-0.Y} = E^{-2.7}$

Models of stellar nuclear synthesis provide these elements (e.g.,

Secondary Cosmic Rays

Secondary cosmic rays are not directly produced in supernovae, but are instead produced via the spallation of heavier cosmic-rays.

•e.g., C + H -> B + ?

Local Spectrum: $E^{-p-2\delta} = E^{-2.X-2\ 0.Y} = E^{-3.1}$

Primary-to-Secondary Ratios

Measurements of the cosmic-ray secondary to primary ratios isolate the value of δ .

Amplitude of the ratios tests a combination of the residence time and the gas density (or a preference for particles staying in the thin disk).
 Verifies the main features of

Verifies the main features of diffusion model.

Primary-to-Secondary Ratios

Can use radioactively decaying nuclei to isolate the dependence on the residence time.

Does not depend on gas density (independent information).

Isotopic ratios very hard to measure with things like AMS-02

Cosmic-Ray Electron Propagation

Different cooling mechanisms than protons (inverse Compton scattering, synchrotron (does not produce gammas), bremsstrahlung

Which produces the following energy loss rate:

$$\frac{dE}{dt} = -\frac{4}{3}\sigma_T c \left(\frac{E}{m_e}\right)^2 \left[\rho_B + \sum_i \rho_i(\nu_i) S(E,\nu_i)\right]$$

$$t_{loss} \approx 320 \; \mathrm{kyr} \left(\frac{E}{1\;\mathrm{TeV}}\right)^{-1} \left(\frac{\rho_{\mathrm{tot}}\;S_{\mathrm{eff}}(E)}{1\;\mathrm{eV\;cm^{-3}}}\right)$$

Calorimetric at high energies! (But not at low energies).

Diffuse Emission

Calculated by multiplying the steady state cosmic-ray density (fit by Galprop to local observations) by the observed gas density.

Pion-Decay (Hadronic)

- Cosmic ray protons strike ambient gas in the Milky Way
- Produce both charged and neutral pions
 - Ratio between neutrino and gamma-ray flux
- Gamma-Ray energy is ~1/20 of proton energy
- Cross-section is roughly energy independent

Gamma-Ray spectrum mirrors proton spectrum

Bremsstrahlung

- Cosmic-ray electrons are deflected when moving near plasma
- Lose energy via these interactions, which release MeV and GeV scale photons

$$P = rac{q^2 \gamma^4}{6 \pi arepsilon_0 c} \left(\dot{eta}^2 + rac{\left(oldsymbol{eta} \cdot \dot{oldsymbol{eta}}
ight)^2}{1 - eta^2}
ight)$$

- Energy loss rate is linear, meaning the timescale for particle energy loss is energy independent.

inverse-Compton Scattering

inverse-Compton scattering based on the following cross-section

$$\begin{split} \frac{d^2\sigma(E_\gamma,\theta)}{d\Omega dE_\gamma} &= \frac{r_0^2}{2\nu_i E^2} \ \times \\ & \left[1+\frac{z^2}{2(1-z)}-\frac{2z}{b_\theta(1-z)}+\right. \end{split}$$

Which produces the following energy loss rate:

$$\frac{dE}{dt} = -\frac{4}{3}\sigma_T c \left(\frac{E}{m_e}\right)^2 \left[\rho_B + \sum_i \rho_i(\nu_i) S(E,\nu_i)\right]$$
$$t_{loss} \approx 320 \text{ kyr} \left(\frac{E}{1 \text{ TeV}}\right)^{-1} \left(\frac{\rho_{\text{tot}} S_{\text{eff}}(E)}{1 \text{ eV cm}^{-3}}\right)$$

$$E_{\gamma,c}=\frac{4}{3}\gamma^2\nu_i$$

Energy Loss Timescales (Overview)

Wild at Heart:-The Particle Astrophysics of the Galactic Centre

R. M. Crocker^{1*†}, D. I. Jones¹, F. Aharonian^{2,1}, C. J. Law³, F. Melia⁴, T. Oka⁵ & J. Ott⁶

¹Max-Planck-Institut für Kernphsik, P.O. Box 103980 Heidelberg, Germany

²Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland

³Radio Astronomy Lab, University of California, Berkeley, CA 94720, U.S.A.

⁴Physics Department, The Applied Math Program, and Steward Observatory, The University of Arizona, Tucson, AZ 85721, U.S.A.

⁵Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan

⁶National Radio Astronomy Observatory, P.O. Box O 1003, Lopezville Rd, Socorro, NM 87801, USA

Accepted XXX. Received XXX; in original form XXX

ABSTRACT

We treat of the high-energy astrophysics of the inner ~ 200 pc of the Galaxy. Our modelling of this region shows that the supernovae exploding here every few thousand years inject enough power to i) sustain the steady-state, in situ population of cosmic rays (CRs) required to generate the region's non-thermal radio and TeV γ -ray emission; ii) drive a powerful wind that advects non-thermal particles out of the inner GC; iii) supply the low-energy CRs whose Coulombic collisions sustain the temperature and ionization rate of the anomalously warm, envelope H_2 detected throughout the Central Molecular Zone; iv) accelerate the primary electrons which provide the extended non-thermal radio emission seen over ~ 150 pc scales above and below the plane (the Galactic centre lobe); and v) accelerate the primary protons and heavier ions which, advected to very large scales (up to ~ 10 kpc), generate the recently-identified WMAP haze and corresponding Fermi haze/bubbles. Our modelling bounds the average magnetic field amplitude in the inner few degrees of the Galaxy to the range $60 < B/\mu G$ < 400 (at 2σ confidence) and shows that even TeV CRs likely do not have time to penetrate into the *cores* of the region's dense molecular clouds before the wind removes them from the region. This latter finding apparently disfavours scenarios in which CRs - in this star-burst-like environment – act to substantially modify the conditions of star-formation. We speculate that the wind we identify plays a crucial role in advecting low-energy positrons from the Galactic nucleus into the bulge, thereby explaining the extended morphology of the 511 keV line emission. We present extensive appendices reviewing the environmental conditions in the GC, deriving the star-formation and supernova rates there, and setting out the extensive prior evidence that exists

$$\begin{array}{rcl} t_{\rm SN} &\simeq& 2.5 \times 10^3 \ {\rm yr} \left(\frac{\nu_{\rm SN}}{0.04 \ (100 \ {\rm yr})^{-1}} \right)^{-1} \ , \\ t_{\rm wind} &\simeq& 4.1 \times 10^5 \ {\rm yr} \ \left(\frac{v_{\rm wind}}{100 \ {\rm km/s}} \right)^{-1} \ , \\ t_{\rm pp}^p &\simeq& 3.1 \times 10^5 \ {\rm yr} \ \left(\frac{n_H}{120 \ {\rm cm}^{-3}} \right)^{-1} \ , \\ t_{\rm inztn}^e &\simeq& 6.7 \times 10^5 \ {\rm yr} \ \left(\frac{E}{{\rm GeV}} \right) \ \left(\frac{n_H}{120 \ {\rm cm}^{-3}} \right)^{-1} \\ t_{\rm brems}^e &\simeq& 2.4 \times 10^5 \ {\rm yr} \ \left(\frac{n_H}{120 \ {\rm cm}^{-3}} \right)^{-1} \ , \\ t_{\rm synch}^e &\simeq& 1.3 \times 10^6 \ {\rm yr} \ \left(\frac{E}{{\rm GeV}} \right)^{-1} \left(\frac{B}{100 \ \mu {\rm G}} \right)^{-2} \\ t_{\rm IC}^e &\simeq& 1.7 \times 10^7 \ {\rm yr} \ \left(\frac{E}{{\rm GeV}} \right)^{-1} \ . \end{array}$$

•

- Codes that solve cosmic-ray propagation numerically.
- Grid galaxy in r, z, and p
- Take a cosmic ray injection profile from models
- Calculate diffusion, secondary production and gamma-ray generation

- <u>Step 1:</u>
 - Start with a model for the energy spectrum and morphology of cosmicray injection

- Codes that solve cosmic-ray propagation numerically.
- Grid galaxy in r, z, and p
- Take a cosmic ray injection profile from models
- Calculate diffusion, secondary production and gamma-ray generation

- Step 2:

- Solve the PDE numerically on a grid

215	55	100	
0.04	00 		50
	48		

- Codes that solve cosmic-ray propagation numerically.
- Grid galaxy in r, z, and p
- Take a cosmic ray injection profile from models
- Calculate diffusion, secondary production and gamma-ray generation

- <u>Step 3:</u>

- Combine with gas density to produce a diffuse emission model.

WebRun Help	Import configuration from: you can use an example or retrieve your old run				
click to change	Common		Grids		Propagation
GALPROP version: 54	Enter the desired (
Search GALPROP web site	Search				
	CODE		WEBRUN	F	ORUM
	and the state of the				and sugar the product

Configure & Submit

Help: Configure & Submit

First-time User Mode

Advanced User Mode

Batch Runs

Monitor Queue

Download Results

Heliospheric modulation with HelMod

Exchange Runs

and the second second second second	and the second second		A CONTRACT OF A			AT BOAT AND AND AND AND AND AND	
CODE	WEBRUN	N	FORUM	RESOURCES	PUBLICATIONS	CONTACTS	BUC
Search							Log
			Enter the desired GAL	PROP v. 54 parameters and click 'Se	ubmit' at <u>the bottom of the form </u>		
Common		Grids	Propagation	Gas	Sources	Emission	Abun
Import configuration from: you can use an example or retrieve your old run Common Parameters							
Name	Value	Description					
Title	Untitled WebRun cal	Descriptive title used to identify the run.					
n_spatial_dimensions	2 👶	Specifies whether 2 or 3 spatial dimensions.					

Energetic and Spatial Grids

Name	Value	Description
r_min	0.0	Minimum galactocentric radius (R) for 2D case, in kpc. Ignored for 3D.
r_max	25.0	Maximum galactocentric radius (R) for 2D case, in kpc. Ignored for 3D.
dr	0.2	Cell size in galactocentric radius (R) for 2D case, in kpc.
z_min	-04.0	Minimum height for 2D and 3D case, in kpc.
z_max	+04.0	Maximum height for 2D and 3D case, in kpc.
dz	0.1	Cell size in z for 2D and 3D case, in kpc

CR Propagation

Name	Value	
D0_xx	6.10e28	The value of the spatial diffusion coefficient D for a D=beta D0_xx (rho / D_rigid_br)^D_g, where beta=v/c, rho=cp/(Ze), D_rigid_br is a refere D0_xx are cm ² s ⁻¹ , and c, e, Z, v and p have their t
D_rigid_br	4.0e3	Rigidity for D0_xx formula, in MV, and also break p
D_g_1	0.33	Diffusion coefficient index below reference rigidity.
D_g_2	0.33	Diffusion coefficient index above reference rigidity.
diff_reacc	1 👶	Indicates whether diffusive reacceleration is to be i turbulence. 1 and 2=no damping, 11 and 12=with w
v_Alfven	30.0	Alfven speed for computation of reacceleration more energy density, see <u>Strong & Moskalenko (1998</u>).
convection	0	Set to 1 to indicate if convection is to be included in
cross_section_option	012 😂	Options for determining isotopic production cross s used (re-normalized if data exist), and for cross_se
primary_electrons	1 🖸	Indicates whether to propagate primary electrons (
secondary_electrons	0	Indicate whether to propagate secondary electrons

galprop.sta tudies of cosmic caus and galactic diffuse gam

Description

particle of rigidity rho is determined via the formula:

ence rigidity (see parameter D_rigid_br), and the power law index D_g=D_g_1 for rho<D_rigid_br, and D_g=D_g_2 for rho>D_rigid_br. The ur usual meanings.

oint in case D_g_1 != D_g_2.

See formula for D0_xx. Kolmogorov turbulence corresponds to a value 1/3.

See formula for D0_xx. Kolmogorov turbulence corresponds to a value 1/3.

included in propagation (0=no, >=1 yes). Recommended 0, 1 or 2 for first time users. 1 and 11=Kolmogorov turbulence, 2 and 12=Kraich wave-damping (additional parameters describe the regime of damping).

mentum diffusion coefficient. This parameter is in fact Alfven speed/sqrt(w), where w is the ratio of MHD wave energy density to magnetic fie

n propagation.

sections. Experimental data (table or fit) are used whenever available. Otherwise, for cross_section_options=012, the code of Webber et al. § ection_option=022, the code of TS'00 is used (re-normalized if data exist).

(0: no, 1: yes). Set to 1 if inverse Compton and/or synchrotron skymaps are to be computed.

(0: no, 1: yes).

anford	l.edu
-ray en	nission
i s ?	
out [trli	nden]
dances	
nits of	
an	
əld	
33 IS	

- Red: Pion decay - ICS: green dashed - Brem: Cyan dot-dashed - Total: Blue dashed

- Orange: All Sources - Brown: Isotropic background (assumed extragalactic)

- Note Residuals are ~10%

- Red: Pion decay
- ICS: green dashed
- Brem: Cyan dot-dashed
- Total: Blue dashed
- Orange: All Sources - Brown: Isotropic background (assumed extragalactic)

Note Residuals are ~10%

Results: Fermi Diffuse Emission Model

- Ring based model developed for point source analyses
- Break down gas densities into galactocentric rings
- Additional post-processing fits to large scale residuals (since p7v6)
- Additional included templates for the Fermi bubbles, Loop I.

2016

Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of *Fermi* Large Area Telescope Data

F. Acero¹, M. Ackermann², M. Ajello³, A. Albert⁴, L. Baldini^{5,4}, J. Ballet¹, G. Barbiellini^{6,7}, D. Bastieri^{8,9}, R. Bellazzini¹⁰, E. Bissaldi¹¹, E. D. Bloom⁴, R. Bonino^{12,13}, E. Bottacini⁴, T. J. Brandt¹⁴, J. Bregeon¹⁵, P. Bruel¹⁶, R. Buehler², S. Buson^{14,17,18}, G. A. Caliandro^{4,19}, R. A. Cameron⁴, M. Caragiulo¹¹, P. A. Caraveo²⁰, J. M. Casandjian^{1,21}, E. Cavazzuti²², C. Cecchi^{23,24}, E. Charles⁴, A. Chekhtman²⁵, J. Chiang⁴, G. Chiaro⁹, S. Ciprini^{22,23,26}, R. Claus⁴, J. Cohen-Tanugi¹⁵, J. Conrad^{27,28,29}, A. Cuoco^{12,13}, S. Cutini^{22,26,23}, F. D'Ammando^{30,31}

Implications

- Need a diffuse model to do any Fermi science on point sources.
- Diffuse Emission Interesting on its Own!
 - Cosmic-ray driven feedback
 - Regulation of star formation
 - Information about pulsar, supernova sources - Understanding of interstellar turbulence, magnetic fields throughout the
 - universe.
 - Particle physics properties studies of the highest energy particles, and new constraints on particle cross-sections.

Fermi Bubbles

- Gigantic lobes of gamma-ray emission from cosmic-rays launched out of the Milky Way Core.
- 10 kpc in height above the galactic plane
- Unknown origins?
 - Prior AGN activity in the Milky Way?!
 - Winds launched from supernova explosions in Milky Way Galactic Center
- Has been subsequently detected in WMAP and ROSAT data.

