

Machine Learning for the measurement of the Cosmic-Ray Inclusive Electron Spectrum with Fermi LAT

Nicolò Cibrario On behalf of Eleonora Barbano and Raffaella Bonino

University of Torino, Italy <u>nicolo.cibrario@unito.it</u>

1 Fermi Summer School

State of the art

Analysis outline

Objective: Discriminate between electrons and background (mainly protons)

4 Fermi Summer School

2017 Analysis

2017 Analysis

IVC Corrections

Need to correct the MC-data agreement with the IVC corrections: introduction of a systematic which is difficult to quantify

Neural Networks

Possible improvements:

Detect and handle **non-linear relations** among variables

Overcome overfitting by some regularizing steps

Less dependency on MC-data agreement, as no cut is applied to variables

Neural Networks

Possible improvement:

Full independence from MC, uncertainties could be reduced

Complication:

Difficulties in dealing with very different sizes of populations: proton background is dominant wrt electron signal

Example of the unsupervised learning results on LAT data

Conclusions

- We developed two new Machine Learning analyses for computing the CRE spectrum with Fermi LAT data.
- We conducted a **Supervised Learning analysis using Neural Networks**. We are running tests to confirm the definitive spectrum.
- We found some promising results using **Unsupervised Learning techniques**, which were never applied before to Fermi LAT data.

Thank you for the attention

& Stay tuned!

log(1-p)

NN details

Selection cut

Uncertainties

Energia [GeV]	σ_{stat}	$\sigma_{e\!f\!f}$	σ_{cont}
74	0.1%	5.5%	3.2%
165	0.2%	7.0%	4.8%
400	0.5%	9.35%	8.2%
1127	1.7%	13.95%	13.7%

22

Dimensionality reduction

Is there an optimal dimension?

