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Abstract

This document describes various formulae used in the ACD reconstruction.

1 Introduction

All the ACD geometrical calculations are trying to establish answers to a simple question: How close did a given

track come to the edge a particular tile or ribbon?. The complications arise because of distinctions between 2D and
3D distances of closest approach as questions as to where the track parameters are defined.

The ACD reconstruction uses three different types of calculations.

1. Finding the point of closest approach to a point.

2. Finding the point of closest approach to a ray.

3. Projecting a track to a plane.

In the first two cases the relevant quantities are the point of closest approach (POCA), the vector of closest
approach (VOCA) the distance of closest approach (DOCA), and the projection of the track covariance matrix along
the vector of closest approach, which is also the estimate of the error on the DOCA. In the last case the relevant
quantities are the intersection point, the distances along the plane to the edges of the tile, and projection of the track
covariance matrix onto the plane.

2 Formulae

2.1 Conventions

2.1.1 Tracks

The TKR Kalman fit expresses the track parameters and covariance matrix in terms of the slope and intercept in
each projection (x0, sx, y0, sy) where the free parameter is z. Since some of the ACD tiles are not oriented in X-Y
plane it is much easier to work in terms of a track express as vector and a reference point (vx, xy , vz, x0, y0) with the
free parameter being the path-length along the track s. The transformation equations are:

v̂x =
sx

(1 + sx
2 + sy

2)1/2
(1a)

v̂y =
sy

(1 + sx
2 + sy

2)1/2
(1b)

v̂z =
1

(1 + sx
2 + sy

2)1/2
(1c)

x0 = x0 (1d)

y0 = y0 (1e)
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The corresponding covariance 5 X 4 derivative matrix is:

A =













0 v̂z(1 − v̂2
x) 0 −v̂xv̂yv̂z

0 −v̂xv̂yv̂z 0 v̂z(1 − v̂2
y)

0 −v̂xv̂2
z 0 −v̂yv̂2

z 0
1 0 0 0
0 0 1 0













(2)

Given these equations we can express an track parameters in the form (v̂, ~x) and transform the covariance matrix
from the 4 X 4 slope-intercept (σx,s

2) to the 5 X 5 vector-point form (σv,x
2):

(σv,x)2 = Aσv,x
2AT (3)

2.1.2 ACD Tiles

For the most part ACD tiles are defined as flat planes. A total of 10 tile on the sides of the top of the ACD which
are bent to cover gaps in the ACD are approximated as two orthogonal planes. In either case all the geometrical
calculations are made with respect to the tile planes.

Any given plane is defined in terms of a center point ~q and orientation matrix R. The rows of the orientation
matrix define unit vectors along the tile local x, y, z axes, (r̂x, r̂y , r̂z). The local axes are oriented so that the tile
extends in x, y and the the z axis points out of the LAT. Sometime we refer the normal to the plane r̂z as the normal
vector n̂. Finally, the active region of the plane is defined by the extent of the tile in local x, y.

For three dimensional calculations we use the corners of the tile ~ci. We also define the 4 rays that connect each
set of adjacent corners. Each ray is specified by a direction vector and a start point (r̂i, ~qi). Note that r̂i = ~ci −~ci+1

and ~qi = ~ci.

For tracks that pass inside the tile it is sufficient to find with edge ray the track comes closest to. However, for
tracks that miss the tile we must also consider all four corners, as the point of closest approach might not fall inside
any of the tile edges.

2.1.3 ACD Ribbons

The ACD ribbons are modeled as a series of rays with a direction and a start point (r̂i, ~qi).

For each of the ribbon rays we check if the POCA falls along that ray. If it does not we must also consider the
POCA at the relevant end of the ray. The POCA w.r.t. the entire ribbon is the closest POCA of any of the various
segments.

2.2 POCA Between a Track and a Point

Given a track defined by (v̂, ~x) with a corresponding covariance matrix (σv,x)2 and a point ~q, the POCA (~p), VOCA

( ~J) and DOCA (d) are:

~p = ~x + sv̂ (4a)

~J = ~∆ + sv̂ (4b)

d = | ~J | (4c)

Where ~∆ is the vector between track and ray reference points: ~∆ = ~x − ~q. Furthermore, s is the path-length
along the track where the POCA occurs. It is given by:

s = ~∆ · v̂ (5)
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The derivatives to transform the covariance matrix from the (~v, ~x) representation to the errors on ~p are:

∂Ji

∂vj
= ∆iv̂j + sδij (6a)

∂Ji

∂xj
= v̂iv̂j + δij (6b)

(6c)

Given these equations we can work out the 3 X 5 derivative matrix B(point) as:

B(point) =





∆0v̂0 + s ∆0v̂1 ∆0v̂2 v̂0v̂0 + 1 v̂0v̂1

∆1v̂0 ∆0v̂1 + s ∆v̂2 v̂1v̂0 v̂1v̂1 + 1
∆2v̂0 ∆1v̂1 ∆v̂2 + s v̂2v̂0 v̂2v̂1



 (7)

Then the errors on the vector of closest approach (σJ
2) and the distance of closest approach (σd

2) are given by:

σJ
2 = Bσv,x

2BT (8a)

σd
2 = JσJ

2pT = pBσv,x
2BT JT (8b)

2.3 POCA Between a Track and a Ray

Given a track defined by (v̂, ~x) with a corresponding covariance matrix (σv,x
2) and a ray defined by (r̂, ~q), the track

POCA (~p), VOCA ( ~J) and DOCA (d) are given by:

~p = ~x + sv̂ (9a)

~J = ~∆ + sv̂ − tr̂ (9b)

d = | ~J | (9c)

Where ~∆ is the vector between track and ray reference points: ~∆ = ~x − ~q. Furthermore, s and t are respectively
the path-lengths along the track and the ray at with the POCA occurs. They can be expressed in terms of the dot
product between the track and ray directions b = v̂ · r̂. The formulae are:

s =
b(r̂ · ~∆) − (v̂ · ~∆)

1 − b2
(10a)

t =
(r̂ · ~∆) − b(v̂ · ~∆)

1 − b2
(10b)

The derivatives to transform the covariance matrix from the (~v, ~x) representation to the errors on ~J are:

∂Ji

∂vj
=

α0iv̂j + α1ir̂j

1− b2
+ sδij (11a)

∂Ji

∂xj
=

β0iv̂j − β1ir̂j

1 − b2
+ δij (11b)

Where ~α0, ~α1, ~β0, ~β1 are various useful vectors defined by:

~α0 = (r̂ · ~∆ + 2bs)r̂ − ~∆ (12a)

~α1 = (v̂ · ~∆ + 2bt)r̂ − b~∆ (12b)

~β0 = br̂ + v̂ (12c)

~β1 = r̂ + bv̂ (12d)
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Given these equations we can work out the 3 x 5 derivative matrix B(ray) as:

B(ray) =







α00 v̂0+α10r̂0

1−b2 + s α00 v̂1+α10r̂1

1−b2
α00 v̂2+α10 r̂2

1−b2
β00v̂0−β10r̂0

1−b2 + 1 β00v̂1−β10r̂1

1−b2
α01 v̂0+α11 r̂0

1−b2
α01 v̂1+α11 r̂1

1−b2 + s α01 v̂2+α11 r̂2

1−b2
β01v̂0−β11r̂0

1−b2
β01v̂1−β11r̂1

1−b2 + 1
α02 v̂0+α12 r̂0

1−b2
α02 v̂1+α12r̂1

1−b2
α02 v̂2+α12 r̂2

1−b2 + s β02v̂0−β12r̂0

1−b2
β02v̂1−β12r̂1

1−b2






(13)

Then the errors on the vector of closest approach (σJ
2) and the distance of closest approach (σd

2) are given by:

σJ
2 = Bσv,x

2BT (14a)

σd
2 = JσJ

2JT = JBσv,x
2BT JT (14b)

2.4 POCA Between a Track and a Plane

This section is largely adapted from R. Johnson’s earlier note [1]. Given a track defined by (v̂, ~x) with a corresponding
covariance matrix (σv,x

2) and a plane defined by a point (~q) and orientation matrix (R = r̂x, r̂y, r̂z , with n̂ = r̂z

normal to the plane), the track crosses the plane at a point the global frame (~p) and in the local frame of the place

defined (~l) by:

~p = ~x + sv̂ (15a)

~l = R~p + ~q (15b)

Where the path-length along the track of the crossing point (s) can be calculated in terms of the vector between

the reference points (~∆ = ~x − ~q) and the plane normal vector n̂. The formula is:

s =
~∆ · n̂

v̂ · n̂
(16)

The derivatives to transform the covariance matrix from the (~v, ~x) representation to the errors on ~p are:

∂pi

∂vj
=

−n̂j

v̂ · n̂
v̂i + sδij (17a)

∂pi

∂xj
= −

∆ · n̂

(v̂ · n̂)2
n̂j v̂i + δij (17b)

Given these equations we can work out the 3 X 5 derivative matrix B(plane) as:

B(plane) =







−n̂0

v̂·n̂ v̂0 + s −n̂1

v̂·n̂ v̂0
−n̂2

v̂·n̂ v̂0 1 − ∆·n̂
(v̂·n̂)2 n̂0v̂0

∆·n̂
(v̂·n̂)2 n̂1v̂0

−n̂0

v̂·n̂ v̂1
−n̂1

v̂·n̂ v̂1 + s −n̂2

v̂·n̂ v̂1 − ∆·n̂
(v̂·n̂)2 n̂0v̂0 1 − ∆·n̂

(v̂·n̂)2 n̂1v̂0
−n̂0

v̂·n̂ v̂2
−n̂1

v̂·n̂ v̂2
−n̂2

v̂·n̂ v̂2 + s − ∆·n̂
(v̂·n̂)2 n̂0v̂0 − ∆·n̂

(v̂·n̂)2 n̂1v̂0






(18)

Then the errors on the intersection point (σp
2) and the projection into the plane (σl

2) are given by:

σp
2 = Bσv,x

2BT (19a)

σl
2 = Rσp

2RT = RBσv,x
2BT RT (19b)
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