
RCE Programmer's Training

Informal walk-through of software environment and
tools for programming the Reconfigurable Cluster

Element.

Material covered can be found on
Confluence → Cluster Computing Initiative
(http://confluence/display/CCI/CCI+Home)

Plan

● Quick look at the RCE
● Discuss building applications
● Discuss debugging applications
● Try some examples

RCE Board and RTM

ClusterElement 1

ClusterElement 2

PPC405
+FPGA

512MB
DRAM

Flash
Memory

MultiGb
links

Zone2

10Gb ethernet

1Gb ethernet

Zone1
Power+
Mgmt

Zone3
Custom

I/O

PPC/FPGA+
PlatformFlash

JTAG
Connectors

DRAM

FX20 +
PlatformFlash

RCE Software Environment

● RTEMS (4.7.1) on PowerPC405
– POSIX API

– BSD network stack with some additions

● cross-compiler via gcc
● makefile system and project/package release

structure
● Xilinx JTAG debugger

Building Applications

● checkout build environment (“release”)
● checkout RCE support projects
● compile your code against these projects
● upload the executable to the RCE flash memory
● boot RCE target

Building Applications

● checkout build environment (“release”)
– source /afs/slac/g/npa/setup/npa.csh

● defines build/debug environment

– cvs co -d <mydir> release

– cd <mydir>

Building Applications

● checkout RCE support projects
– cvs co rce

– cvs co rceusr

– cvs co rceapp

Building Applications

● create your own project/package
– make/tools/pkgcreate.py --project myapps --package example

– (edit code, include targets/libs in constituents.mk)

● or checkout from cvs
– cvs co myapps

● and compile
– gmake ppc-rtems-rce405

– gmake i386-linux

Building Applications

● upload the executable to the RCE flash memory
– build/rceapp/bin/i386-linux/upload_elf_host

– extracts the image from the compiled executable and transmits
over the network to the RCE; a corresponding RCE thread
receives the image and writes it to the indicated block in flash.

– Alternatively, the image can be loaded directly to RAM over
JTAG with the debugging tools and written to flash (via core
code contained within that image)

Building Applications

● boot RCE target
– build/rceapp/bin/i386-linux/console_host

console> reboot

– or get up and push the front panel button,

– or reset the processor via the JTAG debugger.

– Eventually, the RCE will have a daughtercard (IPMI) which
allows it to receive resets from the “shelf manager”.

Debugging Applications

● the JTAG debugger
● the multi-function display
● the console

Debugging Applications

● the JTAG debugger
– xmd (Xilinx Multiprocessor Debugger)

● read/write memory
● read/write processor cache/tags
● read/write PPC and DCR registers
● set breakpoints and step through instructions

Debugging Applications

● the JTAG debugger
– weaver> xmd

– XMD> rst -processor (resets processor execution)

– XMD> dow pgpforward (downloads an executable)

– XMD> con (continues execution)

Debugging Applications

● the JTAG debugger + gdb
– full source code debugger
– weaver> powerpc-rtems-gdb pgpforward

– (gdb) target remote localhost:1234 (connect to xmd)

– (gdb) break init_executive (set a breakpoint)

– (gdb) c (continue execution)

– (gdb) ...

Debugging Applications

● the multi-function display
– a 32-b value can be written to the front panel display

void writeLED(unsigned val) {
 asm volatile ("mtdcr 0x2f7,%0" : : "r" (val));

}

– the display can be configured (firmware change) to
display any characters (5x5 bitmap) if useful

Debugging Applications

● the “console”
– host access via the network to a target thread which

handles interactive commands

– involves a host (linux) process and a target (ppc) thread

– found in rceusr project to allow direct reuse or
extension

Debugging Applications

– ConsoleHandler class instanciated in rce application
● see rceapp/console.cc for rce application example

– console_host -h <hostname> linux executable
● reboot: Reboot the processor
● remove <filenum>: Remove the file specified by <filenum>
● bootcfg <index> <image> <flags>: Sets boot vector <index> to load

image <image> and user configuration <flags>
● bootdir: Dumps flash boot directory contents
● filedir: Dumps flash file directory contents
● echo <message>: Enter a time-stamped message in the system log
● log: Dumps system log
● clear: Clears system log

Debugging Applications

– DebugHandler class instanciated in rce application
– debug_host -h <host> -f <executable> (linux executable)

● getexceptions: print the exceptions (if any) recorded by the RCE since
the last reset/power-on; includes CPU registers, stack trace

● clearexceptions: clear all the recorded exceptions
● getmessages: print all messages recorded by the RCE since the last

reset/power-on
● clearmessages: clear all the recorded messages
● getcontext: shows a stack dump of the different threads running in the

RCE
● dumpstats: shows a dump of the RCE network statistics

Examples

– rceapp/console/console.cc application
● (examine constituents.mk – makefile support)
● (examine rtems_config.cc – per executable definition of rtems

resources)
● (examine rce/init/src/Init.cc)
● initializes ethernet driver and attaches to the network stack
● instanciates ConsoleHandler, DebugHandler, and UploadManager

threads

– uses rce/service/Thread POSIX thread wrapper
– uses rce/net/Socket* socket API wrappers

● (connect debugger and run the executable)

Examples

– rceapp/pgpforward/pgpforward.cc application
● initializes ethernet driver and attaches to the network stack
● initializes pgp driver
● starts thread which

– waits for a datagram over the network
– forwards the network data over the pgp link
– forwards the pgp response back over the network
– increments a counter

● instanciates ConsoleHandler, DebugHandler, and UploadManager
threads

– uses rce/service/Thread POSIX thread wrapper
– uses rce/net/Socket* socket API wrappers

