

RT-10 Workshop on ATCA

Lessons learned in designing high speed, massively parallel DAQ systems using the high availability ATCA Platform

Michael Huffer, mehsys@slac.stanford.edu May 22-23, 2010

> Representing: Mark Freytag Gunther Haller Ryan Herbst Chris O'Grady Amedeo Perazzo Eric Siskind Matt Weaver

~10K links, Physically inhomogeneous

Disclaimers & context

- Do not profess to be an expert on ATCA, simply intend to...
 - Share our experience in developing ATCA products
- Neither am I an evangelist for the standard
 - Many alternatives exist with same attractive features
 - What differentiates ATCA from the pack (IMHO)...
 - its relative maturity
 - backing of PICMG & telecom industry
- Talk will focus on ATCA, <u>not</u> uTCA or AMC...

Reference to any manufacturer does not constitute any formal endorsement by SLAC or DOE

 <u>Not</u> an advantage shared by industry

- Separating these roles helps one understand why the specification is so complex...

Outline

- SLAC Detector (DAQ) R & D
 - Project genesis & motivation
 - Concepts & building blocks
 - \cdot The RCE & CIM
 - The RCE & CIM hosted on ATCA boards
- · Why ATCA is a good fit for DAQ
- Shelf selection & board development
- Board design considerations
 - Introduction
 - Power distribution
 - Intelligent Platform Management (IPM)
 - Rear-Transition-Modules (RTM)
 - Transport Interfaces
 - Summary

٠

SLAC Detector R & D

- DAQ/trigger "technology" for next generation HEP experiments supported by SLAC
 - LCLS
 - LSST
 - SuperB
 - LHC luminosity upgrade (ATLAS)
 - Massively parallel database systems (Petacache)
- Goals:
 - "Survey requirements & capture their commonality"
 - Tools, <u>not</u> solutions. "one size does <u>not</u> fit all"
 - Leverage recent industry innovation
 - Technology evaluation & demonstration "hardware"
 - Must be targeted to solving "real problems"

Three building block concepts

- Computational elements. Must:
 - be low-cost
 - **\$\$\$**
 - footprint
 - power
 - support a variety of computational models
 - · CPU
 - · DSP
 - gates
 - have both flexible and performanent I/O

Mechanism to connect these elements. Must:

- be low-cost
- provide low-latency/high-bandwidth I/O
- be based on a commodity (industry) protocol
- support a variety of interconnect topologies
 - hierarchical
 - peer-to-peer
 - fan-In & fan-Out
- Packaging solution for both element & interconnect
 - Must provide High Availability
 - must allow scaling
 - must support varying physical I/O interfaces
 - preferably based on a commercial standard

- The Reconfigurable Cluster Element (RCE) based on:
 - System-On-Chip technology (SOC)
 - Virtex-4 & 5

The Cluster Interconnect (CI)

- based on 10-GE Ethernet switching

ATCA

- Advanced Telecommunication Computing Architecture
- crate based, serial backplane

(Reconfigurable) Cluster Element (RCE)

•

Embedded software & development support

- Cross-development...
 - GNU cross-development environment (C & C++)
 - Remote (network based) as well as local GDB debugger
 - Network (virtual) console and telnet support
- Operating system support...
 - Generic bootstrap loader (O/S independent)
 - Open Source Real-Time kernel (RTEMS)
 - POSIX compliant interfaces
 - Standard I/P network stack
 - Exception handling support
 - **Object-Oriented emphasis:**
 - Class libraries (C++)
 - Plug-In support
 - Configuration Interface

Resources

- Multi-Gigabit Transceivers (MGTs)
 - Up to 20 lanes of:
 - SER/DES
 - input/output buffering
 - · clock recovery
 - 8b/10b encoder/decoder
 - 64b/66b encoder/decoder
 - Each lanes can operate up to 6.5 gb/s
 - Lanes may be bound together for greater aggregate speed
 - 8 lanes reserved for 10-GE (4 per core)
- Combinatoric logic
 - LUTs & gates
 - flip-flops (block RAM)
 - I/O pins
- DSP support
 - Contains up 240 Multiple-Accumulate-Add (MAC) units
 - Can interface through either plug-in or processor interface

Protocol "Plug-Ins"

The Cluster Interconnect (CI)

- Managed 24/48 port 10-GE switch
 - Reuses RCE for management

- Switching based on the Fulcrum FM224
 - 24 port 10-GE switch
 - is an ASIC (packaging in 1433-ball BGA)
 - 10-GE XAUI interface, however, supports multiple speeds...
 100-BaseT, 1-GE & 2.5 gb/s
 - less then 24 watts at full capacity
 - cut-through architecture (packet ingress/egress < 200 ns)
 - full Layer-2 functionality (VLAN, multiple spanning tree etc..)
 - configuration can be managed or unmanaged

A cluster of 12 elements (24 nodes)

Node Board (RCE board + RTM)

Department of Particle Physics & Astrophysics

Office of Science/ U.S. D.O.E.

Hub board (Cluster Interconnect board + RTM)

Why ATCA for large scale DAQ?

- Its attractive features:
 - Backplane & packaging available as a commercial solution
 - (Relatively) generous form factor
 - \cdot 8U x 1.2" pitch
 - Emphasis on High Availability
 - lots of redundancy
 - hot swap capability
 - well-defined environmental monitoring & control (IPM)
 - pervasive industry use
 - External power input is low voltage DC
 - allows for rack aggregation of power
- Its <u>very</u> attractive features:
 - The concept of a Rear Transition Module (RTM) allows...
 - all cabling on rear (module removal without interruption of cable plant)
 - separation of data interface from the mechanism used to process data
 - High speed, serial backplane
 - protocol agnostic
 - provision for different interconnect topologies

Shelf selection

- (loosely) ATCA <u>Shelf</u> corresponds to a classic "Crate"
- Shelves vary in size and orientation (horizontal or vertical):
 - 2 slots (minimum)
 - 5 slots (good development size)
 - 14 slots (maximum 19" rack)
 - 16 slots (Euro-standard)
- Smaller shelves (< 6) typically have <u>mesh</u> topologies
 - Degenerates to <u>Star</u> topology
- Smaller shelves are typically oriented <u>horizontally</u>
- Standard expects line voltage of 48 VDC
 - Handicap in bench-top (development) environment
- "Dumb" or "smart" shelf manager?
- Beware of differentiation between <u>physical</u> and <u>logical</u> slots
 - Physical slot numbering is invariant of board function, while logical slot numbering depends on board function

ASIS 5-slot Shelf

Development...

Introduction

- Dderives from ATCA philosophy of "Think globally, act locally"
 - Support multi-tenancy philosophy
 - Maintain Inter-operability within an ecosystem
- Good news
 - Industry provides (at least) partial solutions
 - "cookie cutter approach will serve the developer well

Power Distribution (1)

- Assumes RTM hot-swap is <u>dependent</u> on Front-Board
 - The P1 connector sources most of the inputs, however...
 - The IPM controller mediates all power transitions

Power Distribution (2)

IPM from the board's perspective

- ATCA assumes your boards are sited in a data center in shelves outside both your interest & control
- Multi-tenant model: Boards (actually their FRUs) "rent" their slot from a shelves' "landlord"
 - Landlord communicates with boards through <u>Shelf Manager</u> (ShMC)
 - Boards communicate with landlord through their <u>Controller</u> (IPMC)
- Protocol is IPM (Intelligent Platform Management)
 - Pervasive usage <u>outside</u> ATCA
 - Specification is IPMI (IPM Interface)
 - Shelf Bus is IPMB (connections between slots & Shelf Manger)
 - IPMB is a super-set of I^2C distributed on back-plane
 - Shows up on the board's P1 connector
 - Classic view of IPM is remote operation of board...
 - Monitor & configure board's payload
 - Power cycle
 - Reboot & reset payload
- However, IPM manages board "hot-swap" (a purely local function)

What is an (IPM) Controller?

- Physically:
 - Embedded processor (behavioral model of IPM is quite rich)
 - Lot's of software (could also involve some firmware)
 - Modest amount of persistent storage (code + configuration)
 - Discrete, digital I/O
 - ADCs and DACs
 - I²C interface (at least two, typically three or more)
 - Logical functions:
 - Manages IPMB communication
 - Manages hot-swap process
 - Support for E-keying
 - Monitors power and cooling
 - Responds to watch-dog timer (by resetting)
 - Maintains inventory information
 - Manages payload interface
 - Form & function <u>not</u> defined by the specification

(IPM) Controller (solutions)

- Build...
 - Pretty daunting (significant NRE and maintenance costs)
 - Eliminates any potential royalty & licensing issues
 - Buy (most likely only a partial solution)
 - Depending on payload sophistication could provide complete solution
 - Upfront costs could be prohibitive
 - Potential royalty & licensing issues
- Procrastinate:
 - Bring all necessary signals to header or stay-clear area on board
 - Allow deferring solution at least through development cycle

We <u>bought</u> from Pigeon-Point-Systems

- Company was purchased a year ago (or so) by ACTEL
 - Cost and licensing much more flexible
- PPS solution is hosted on ACTEL's (Smart) Fusion FPGA product
 - This is a SOC, incorporating:
 - \cdot ADCs, DACs and digital I/O
 - Hardware signal conditioning
 - Processor, hard or soft (ARM Cortex-7)
 - Configuration & user flash
 - I²C interfaces
- What are you buying?
 - Development license
 - Source code (software + firmware)
 - Development board
 - Reference design (schematic + software/firmware)
 - Right to distribute royalty free (binary) any board design
 - Does <u>not</u> include the (FPGA) devices themselves...

IPMC daughter-board

Current boards simply map reference design to daughter-board...

The RTM (1)

- <u>Physical</u> manifestation of the principle of separation of interface from implementation.
- Ensures cable plant management and hot-swap do not collide
- When is an RTM appropriate?
 - Design requires more area than realizable with Front-Board
 - Design requires a significant amount of <u>external I/O</u>
- What should <u>not</u> go into an RTM?
 - Anything which consumes a lot of power
 - Minimal cooling available is 5W (!)
 - Increased at shelf manufactures discretion (30-40W typical)
 - Access to power limited to P3 area through Front-Board
 - Anything which costs \$\$\$ & represents complexity
 - RTM represents a small & relatively confined footprint
 - Access to back-plane limited to P3 area through Front-Board
 - In short, to maximize re-use:
 - Intellectual investment should be in Front-Board
 - RTMs (for a given Front-Board) should be a "dime-a-dozen"

RTM (2)

- Consider a typical communication protocol's Physical layer...
 - 10-**G**E
 - PCIe
 - SATA
 - Fibre/channel
 - Infiniband
- Composed from three sub-layers:
 - Physical Media <u>Access</u> (PMA)
 - Physical <u>Coding</u> Sub-layer (PCS)
 - Physical Media <u>Dependences</u> (PMD)

Excellent candidates for re-use

CX-4, XENPACK, SFP+, etc...

٠

٠

The RTM - Zone 3 considerations

- P3 connectors are your generic interface to your Front-Board
 - Proper choice of connector & pin-outs ensures re-use
 - Pay attention to mechanical tolerances
- Connectors will need to support following functionality...
 - Power & ground
 - JTAG (Reprogramming of board logic) Connect to:
 - Front-Panel of Front-Board
 - Hot swap support (handles and blue LED) Connect to:
 - IPM controller
 - Housekeeping (payload configuration & monitoring). Connect:
 - Front-Board payload
 - IPM controller
 - RTM "type" identifier. Connect to:
 - IPM controller (& possibly Front-Board payload)
 - External I/O (High-speed serial and/or parallel). Connect:
 - Front-Board payload
- In Short: same functionality issues as in Zone 1 & 2
 - Reuse ZD (ADF) connectors
 - Consider multigig RT

The RTM - Hot swap?

- Specification defines hot-swap of the RTM as:
 - Activation/Deactivation independent of Front-Board,...
 - Not whether or not it can inserted/removed "live"
 - Hot-swap (as defined) is hard, requiring (at a minimum)...
 - treatment of the RTM as separate (managed) FRU
 - careful consideration of connection's electrical properties
 - attention to interaction with front-board payload
- Recommendation:
- Treat Front-Board & its RTM as a single unit
- Allow RTM live insertion/removal <u>dependently</u> with Front-Board
 - Front-Board activation/deactivation actives/deactivates RTM
 - RTM activation/deactivation actives/deactivates Front-Board

Transport Interfaces (Introduction)

- The specification <u>assumes</u> boards need to interact with one another...
 - Consequently defines four different <u>types</u> of board communication:
 - The Base Interface
 - The Fabric Interface
 - The Clock (Synchronization) interface
 - The Update Channel Interface
- The overriding philosophy is to be as protocol agnostic as possible
 - Specification only determines connectivity between boards
 - Assumes data is transmitted/received serial-differential
 - Assumes communication is full-duplex (independent transmit/ receive)
- However, there are exceptions as encapsulated by these two rules:
 - Boards <u>must</u> provide IP support on either Base or Fabric Interface
 - The base interface must satisfy an Ethernet MAC
 - 10/100/1000Base-T

The Channel (from the board's perspective)

- All transport interfaces are characterized in units of <u>Channels</u>
- Channels correspond to pin assignments on Zone 2 connectors
- Capacity & number of channels varies by <u>Interface Type</u>
 - The capacity of a channel is measured in units of either:
 - <u>Signal/pairs</u> (two "wires")
 - <u>Ports</u> (2 signal/pairs, 1 for transmission & 1 for reception)
- Channels on one board connect to channels on other boards.
 - Connection topology also varies by interface type.

Interface Type	Capacity		Maximum	Teneloov
	pairs	ports	number	ropology
Base	4	2	16	Point-to-point
Fabric	8	4	15	Point-to-point
Update	10	5	1	Point-to-point
Synchronization Clock	6	3	6	Bussed

Shelf topologies

- Determines how channels on one board are mapped to channels on another board.
 - Topologies for Base, Update¹ and Clock interfaces are fixed
 - Topology for the fabric interface <u>varies</u>. However...
 - ATCA restricts the choices to a small, finite set...
 - with its members derived from 2 basic configurations:

Node v Hub boards

- Difference in number of connectors in Zone 2
- E-keying requirements will vary
- Constraints on slot usage
 - Hub boards must occupy (logical) slots 1 & 2
 - Node boards won't function (predictably) in hub slots
 - portability issues with Update Channel usage (see below)

Dual-Star Fabric

- Intended for redundancy (fail-over).
- Node boards must reside in (logical) slots 1 & 2
- Note: Logical slot numbering is shelf <u>dependent</u>
 - Slots 1& 2 must be designated with RED (not always true)
- Arguably most popular (& inexpensive) configuration

Mesh Fabric (full & replicated)

- More connectivity, more connectors, ... more expensive
- Meshes can used as Stars
- Replication doesn't change connectivity, it changes *capacity*
 - Added in units of <u>channels</u>
 - Comes at the cost of reducing slot count
 - The invariant is the number of channels per board (15)

Photo courtesy ELMA-BUSTRONIC

Base Interface and topology

- Independent of fabric topology <u>always</u> Dual-Star topology
- In general same rules apply as *Fabric* Dual-Star. For example:
 - Nodes always map channels 1 & 2 to the hub slots (1 & 2)
- However, some differences...
 - Must implement *Ethernet* 10/100/1000Base-T
 - Drivers do <u>not</u> require isolation from back-plane prior to system management enable
 - Specifically auto-negotiation is unconstrained
 - Implies base-interface does <u>not</u> require E-Keying
 - Shelf Manager is mapped to the hub slots

Update Interface

- Intended to help "glue" different slots together
 - Support for (virtual) multi-width boards (2X and 3x)
- Same electrical requirements as Base & Fabric interfaces
- Which slots does a back-plane glue together?
 - Specification is somewhat ambiguous. To quote:
 - "Update Channels should be routed between physically adjacent slots"
 - "Logical slots 1 & 2 should have the Update Channel routed between them"
- In fact, different manufactures for different back-planes map the Update Channel in different ways
- Board developers should be cautious in its usage
 - Must your board must be portable across all back-planes?
- As always E-keying is vital to correct operation...

Synchronization Clock Interface

- Provides synchronous timing distribution to the boards of a shelf...
- Seen by the back-plane as six (6) individual busses.
 - Each bus constitutes one multi-drop, differential pair
- For redundancy the six buses are divided into three groups:
 - CLK1 (A & B) Telecom specific
 - 8 KHZ clock A/B failover (digital telephony)
 - CLK2 (A & B) Telecom specific
 - 19.44 MHZ A/B failover (SONET reference clock)
 - CLK3 (A & B) User defined
 - A & B can be used independently, but limited to 100 MHZ
- Comment: One of the few places where industry neutrality is violated
- Each bus is implemented to the specifications of MLVDS
 - Multi-drop LVDS
 - both National Semiconductor & TI provide a wealth of resources
 - Excellent reference: National Semiconductor Application Note 1503
 - "Designing an ATCA Compliant M-LVDS Clock Distribution Network"
- Usage is problematic in a multi-tenant environment due to bus topology
- Again, E-keying is vital to success...

Summary

- SLAC detector R & D (DAQ) strategy based on modular building blocks
 - (Phase I) architecture is now relatively mature. Resulted in...
 - Both hub & node reference boards (& corresponding RTMs)
 - Validation of ATCA as viable DAQ platform
 - (Phase II) under development
 - Will result in a single (full mesh enabled) reference board
- ATCA is <u>non-trivial</u>. Complexity is due to:
 - Eco-system Interoperability
 - Multi-tenant architecture
 - High Availability
- Practice role separation (The manufacturer is <u>not</u> the customer)
- Consider these issues early in design process...
 - What transport interfaces & with what protocols?
 - Node v Hub boards
 - IPMI (licensing and royalty issues as well as technical choices)
 - Consider procrastination
 - Does your front-board need an RTM?
 - Intelligent usage of the P3 area is the <u>key</u> to front-board reuse
- Its <u>not</u> as hard as you might believe...
 - Industry provides solutions to many ATCA specific functions
 - The first board is the hardest (cookie cutter approach is quite viable)