TYPICAL SETUP: SA-261-101-34-C00

CABLE INFO:
CNCT_1: ADPTR x2_Banana-M-to-BNC-F \rightarrow CBL BNC-M-to-SMA-M
CNCT_2: CBL SMA-M-to-BNC-M \rightarrow ADPTR BNC-F-to-x2_Banana-F
CNCT_3: CBL SMA-M-to-SMA-M
CNTC_4: ADPTR x2_Banana-M-to-BNC-F \rightarrow CBL BNC-M-to-SMA-M
CNCT_5: CBL BNC-M-to-SMA-M
CNCT_6: CBL BNC-M-to-BNC-M

Notes:

1.) SYMBOL \ddagger Current limited to 5 mA due voltage-potential-relative to ground $> \pm 50 \mathrm{VDC}$

a.) COMP is used to set the DC-bias on the substrate
b.) The resistance between COMP and OUT is currently 1 M Ω
i.) This is adequate unless substrate locks up-can reduced if lockup becomes an issue
c.) V_COMP $\geq 0 V D C$: The closer to 0 the larger the substrate capacitance (less Likely to lockup)
3.) OUT is generate a positive $0 \rightarrow+100 \mathrm{~V}$ pulse relative to V_COMP
4.) FOR ALL TEST-POINTS (TP) Use $\geq 1 \mathrm{M} \Omega$ probe
5.) LIMIT, $\left|V _C T R L\right| \leq+10 V D C: ~ I n p u t ~ r e s i s t a n c e ~ o n ~ C T R L ~ n o d e ~ i s ~ 1 k \Omega$
6.) ATTN 10x SA-261-101-35-C00
a.) Designed to work at max voltage $\pm 32 \mathrm{VDC}$ input with $1 \mathrm{k} \Omega$ load
b.) Had directionality (non-symmetric voltage divider)
c.) Used so can sweep pulse voltage in smaller steps
7.) ALL NODES ARE CLAMPED FOR PROTECTION to GND with zener-diodes: Except OUT is clamped to COMP with diode to only produce positive pulses relative to COMP (to avoid possibly reverse biasing substrate)

