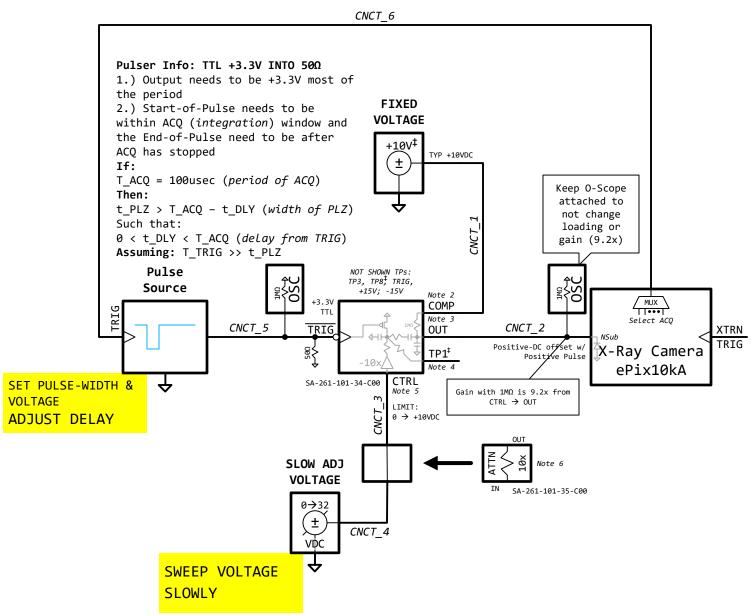
TYPICAL SETUP: SA-261-101-34-C00

CABLE INFO:

CNCT_1: ADPTR x2_Banana-M-to-BNC-F → CBL BNC-M-to-SMA-M


CNCT_2: CBL SMA-M-to-BNC-M \rightarrow BNC-T \rightarrow ADPTR BNC-F-to-x2_Banana-F

CNCT 3: CBL SMA-M-to-SMA-M (USE WITH ATTN)

CNTC_4: ADPTR x2_Banana-M-to-BNC-F \rightarrow CBL BNC-M-to-SMA-M

CNCT 5: CBL BNC-M-to-SMA-M \rightarrow SMA-T loaded with 50 Ω

CNCT 6: CBL BNC-M-to-BNC-M

Notes

- 1.) SYMBOL ‡ Current limited to 5mA due absolute-voltage-potential-relative to ground > 50VDC
- 2.) LIMIT, $|V_COMP (-10*V_CTRL)| \le 180VDC$: C10 to C12 on SD-144-174-04 are limited to 200VDC
 - a.) COMP is used to set the DC-bias on the substrate
 - b.) The resistance between COMP and OUT is currently $1\text{M}\Omega$
 - i.) This is adequate unless substrate locks up-can reduced if lockup becomes an issue
 - c.) V_COMP ≥ 0VDC: The closer to 0 the larger the substrate capacitance (less likely to lockup)
- 3.) OUT is generate a positive 0 \rightarrow +100V pulse relative to V_COMP
- 4.) <u>FOR ALL</u> TEST-POINTS (TP) Use $\geq 1M\Omega$ probe
- 5.) LIMIT, $0 \le V_{CTRL} \le +10VDC$: Input resistance on CTRL node is $1k\Omega$
- 6.) OPTIONAL: ATTN 10x SA-261-101-35-C00
 - a.) Designed to work at max voltage $\pm 32 \text{VDC}$ input with $1 \text{k}\Omega$ load
 - b.) Had directionality (non-symmetric voltage divider)
 - c.) Used so can sweep pulse voltage in smaller steps
- 7.) ALL NODES ARE CLAMPED FOR PROTECTION to GND with zener-diodes: Except OUT is clamped to COMP with diode to only produce positive pulses relative to COMP (to avoid possibly reverse biasing substrate)