
EED Software
development

Claudio Bisegni / Dev Soni

Date May 25 2023

Agenda • proof of concept for new ELOG application

2

• overview of the new web application architecture base on Kubernetes

ELOG Proof of Concept

3
To develop

POC Objective:
• try to merge the data into the same database for MCC and Physics elog
• create a modern unique Elogs application

MCC Elog data -> from oracle(MCCO)

Pysics Elog data -> from filesystem

Data sources: What has been implemented:
• MCC and Physic Log import

procedure (only 01/2023 data)
• view log with pagination
• date and logbook filtering
• image visualization

ELOG Proof of Concept

4
To develop

Key features :

• mongodb permit to save data with different structure in the same collection using BSON (Binary JSON - https://bsonspec.org)

• MinIO, S3 compatible storage (https://min.io) used for the physics log images

• Java backend that expose REST API for search and manages the data

• React UI, use REST API of the backend for present the data to the user

docker compose

MongoDB

MinIO

Elog
java backend

react application

Web Browser

Rest API Call

executed on test vm

https://bsonspec.org
https://min.io

ELOG Proof of Concept – MCC data structure

5

The exported record from Oracle have been converted to JSON before pushed to MongoDB

{
"ELOG_ID": 1188604,
"LOGDATE": "2023-01-27 18:49:40",
"PROGDATE": "2023-01-30 18:49:35",
"COMMITDATE": "2023-01-27 18:49:47",
"TITLE": "Attention: The Interlock Checklist for the BTH is IMCOMPLETE. Must be completed before leaving it in NO ACCESS and enable hazards.",
"PRIORITY": "VIP",
"TEXT_TYPE": "text/plain",
"TEXT_LENGTH": 128,
"TEXT": "The incomplete BTH Interlock Checklist is located in the Safety Assurance Forms to be Completed folder located on the EOIC desk.",
"OS_USERNAME": "apache",
"ENTRY_TYPE": "LOGENTRY",
"LOGBOOK": "MCC",
"LASTNAME": "Duong",
"FIRSTNAME": "Tri",
"USERNAME": "thduong2",
"USER_PRECEDENCE": 1,
"PROGRAM_ID": 152,
"PROGRAM_NAME": "Web Entry CGI",
"PROGRAM_CATEGORY": "USER",
"HOSTNAME": "mccelog",
"XML_FILENAME": "20230127_184940_104534.xml",
"SEGMENT_LIST": "LCLS_NC",
"SEGMENT": "LCLS_NC",
"SEGMENT_NAME": "LCLS NC Linac"
},

ELOG Proof of Concept – Physics data structure

6

01
│ ├── 02.01
│ │ └── init.xml
│ ├── 03.01
│ │ └── init.xml
│ ├── 04.01
│ │ └── init.xml
│ ├── 05.01
│ │ └── init.xml
│ ├── 06.01
│ │ └── init.xml
│ ├── 07.01
│ │ └── init.xml
│ ├── 08.01
│ │ └── init.xml
│ └── init.xml
…
| ─ 03
│ │ ├── 16.01
│ │ │ └── init.xml
│ │ ├── 17.01
│ │ │ ├── 2023-01-17T14:45:06.png
│ │ │ └── init.xml
│ │ ├── 18.01
│ │ │ ├── 2023-01-18T15:21:42-00.png
│ │ │ ├── 2023-01-18T15:21:42-00.ps
│ │ │ ├── 2023-01-18T15:21:42-00.xml.BAK
│ │ │ ├── 2023-01-18T15:21:42-01.xml
│ │ │ ├── 2023-01-18T15:34:06-00.png
│ │ │ ├── 2023-01-18T15:34:06-00.ps
│ │ │ ├── 2023-01-18T15:34:06-00.xml
│ │ │ ├── 2023-01-18T15:39:26-00.png
│ │ │ ├── 2023-01-18T15:39:26-00.ps
│ │ │ ├── 2023-01-18T15:39:26-00.xml.BAK
│ │ │ ├── 2023-01-18T15:39:26-01.xml
│ │ │ ├── 2023-01-18T15:40:14-00.png
│ │ │ ├── 2023-01-18T15:40:14-00.ps
│ │ │ ├── 2023-01-18T15:40:14-00.xml
│ │ │ └── init.xml
…

<severity>NONE</severity>
<location>not set</location>
<keywords>none</keywords>
<time>15:34:06</time>
<isodate>2023-01-18</isodate>
<author>Matlab</author>
<category>USERLOG</category>
<title>Laser Heater Alignment</title>
<metainfo>2023-01-18T15:34:06-00.xml</metainfo>
<file>2023-01-18T15:34:06-00.png</file>
<link>2023-01-18T15:34:06-00.ps</link>
<text></text>

Content from /03/18.01/ 2023-01-11T15:17:49-01.xml

{
"LOGDATE": “2023-01-18T15:34:06-00”,
"COMMITDATE": “2023-01-18T15:34:06-00”,
"PROGDATE": “2023-01-18T15:34:06-00”,
"OS_USERNAME": “Matlab”,
"TITLE": “Laser Heater Alignment”,
"LOGBOOK": "PHYSICS-LOG",
"ENTRY_TYPE": “USERLOG”,
"PRIORITY": “NONE”,
"TEXT": “”,
"SEGMENT": “not set”,
"TAGS": “none”,
"FILE_PREVIEW": “pelogs-data/03/18.01/2023-01-18T15:34:06-00.png”
"FILE_PS":” pelogs-data/03/18.01/2023-01-18T15:34:06-00.ps”
}

mapping
on Elog Key

{
"LOGDATE": < isodate >,
"COMMITDATE": < isodate >,
"PROGDATE": < isodate >,
"OS_USERNAME": < author >,
"TITLE": < title >,
"LOGBOOK": "PHYSICS-LOG", #fixed for all entries
"ENTRY_TYPE": < category >,
"PRIORITY": < severity >,
"TEXT": < text >,
"SEGMENT": < location >,
"TAGS": < keywords >,
"FILE_PREVIEW": < file >,
"FILE_PS":< link >
}

conversion
to JSON

xml content

Physics LOG are stored on a file system directory Structure

A valid “log” is composed by
• Xml file for description
• PNG preview image
• PS image

ELOG Proof of Concept – MCC vs Physics log structure

7

{
"ELOG_ID": 1188604,
"LOGDATE": "2023-01-27 18:49:40",
"PROGDATE": "2023-01-30 18:49:35",
"COMMITDATE": "2023-01-27 18:49:47",
"TITLE": "Attention: The Interlock Checklist for the BTH is IMCOMPLETE. Must be completed before leaving it in NO ACCESS and enable
hazards.",
"PRIORITY": "VIP",
"TEXT_TYPE": "text/plain",
"TEXT_LENGTH": 128,
"TEXT": "The incomplete BTH Interlock Checklist is located in the Safety Assurance Forms to be Completed folder located on the EOIC desk.",
"OS_USERNAME": "apache",
"ENTRY_TYPE": "LOGENTRY",
"LOGBOOK": "MCC",
"LASTNAME": "Duong",
"FIRSTNAME": "Tri",
"USERNAME": "thduong2",
"USER_PRECEDENCE": 1,
"PROGRAM_ID": 152,
"PROGRAM_NAME": "Web Entry CGI",
"PROGRAM_CATEGORY": "USER",
"HOSTNAME": "mccelog",
"XML_FILENAME": "20230127_184940_104534.xml",
"SEGMENT_LIST": "LCLS_NC",
"SEGMENT": "LCLS_NC",
"SEGMENT_NAME": "LCLS NC Linac"
},

{
"LOGDATE": “2023-01-18T15:34:06-00”,
"COMMITDATE": “2023-01-18T15:34:06-00”,
"PROGDATE": “2023-01-18T15:34:06-00”,
"OS_USERNAME": “Matlab”,
"TITLE": “Laser Heater Alignment”,
"LOGBOOK": "PHYSICS-LOG",
"ENTRY_TYPE": “USERLOG”,
"PRIORITY": “NONE”,
"TEXT": “”,
"SEGMENT": “not set”,
"TAGS": “none”,
"FILE_PREVIEW": “pelogs-data/03/18.01/2023-01-18T15:34:06-00.png”
"FILE_PS":” pelogs-data/03/18.01/2023-01-18T15:34:06-00.ps”
}

• The use of MongoDB simplify the management of documents with heterogeneous set of key/value elements
• MCC-Elog data structure has driven the mapping of Physics Elog data import

Proof of concept architecture

8
To develop

Demo

Overview of new application Kubernetes architecture

9
To develop

Based on Kubernetes
(an open-source system for automating deployment, scaling, and management of containerized applications)

• helps run and organize lots of docker containers, on many computers.

• handles the distribution of workload across different machines in the cluster,
automatically scaling the application based on demand.

• monitors the health of containers and restarts them if they fail. Additionally,
Kubernetes enables easy updates and rollbacks of applications without any
downtime.

• Automatically management of:
• network
• http load balancer
• volume claims
• scale management

Key Features

Overview of new application Kubernetes architecture

10

What's provided

• MongoDB cluster(https://mongodb.com), highly scalable document database. (done)

• Postgres cluster (done)
• but if needed also MariaDB can be installed.

• MinIO (https://min.io, Amazon S3 compatible object storage) a distributed modern storage for the application’s managed data. (from TID)

• ArgoCD (https://argoproj.github.io), tool for a Declarative Continuous Delivery for Kubernetes. (installed by TID help)
• ensures that the deployed applications match the desired state defined in the Git repository.
• If any differences are found, it reconciles them by applying the necessary changes to bring the actual state in line with the desired state.

• documentation: https://confluence.slac.stanford.edu/display/EEDWAD/EED-Web+Application+Development+Home (TODO)

• template based on ‘copier’: (java example) https://github.com/slaclab/eed-java-backend-template, (Python and React -> TODO)

• general pipeline for build software, test software, build docker image, change deploy configuration (Python and React -> TODO, java-> almost DONE)

• Production (TODO) and Test environment (DONE)
• test environment hostname: https://accel-webapp-dev.slac.stanford.edu/xxxx

uses Git to manage and automate the deployment of applications. It treats infrastructure and application configurations as code stored in a Git repository. Changes
made in Git trigger automatic updates to the target environment, ensuring that the desired state matches the actual state. It brings simplicity, traceability, and
automation to the deployment process.

Best practices from GitOps approach

https://mongodb.com/
https://min.io/
https://argoproj.github.io/
https://confluence.slac.stanford.edu/display/EEDWAD/EED-Web+Application+Development+Home
https://github.com/slaclab/eed-java-backend-template

11

application
git repo

Developers

EED
DevOps Engineer

compilation testing
build

docker image
update

deploy conf
test deployment

git repo
production

deployment git repo

Application
artifact

Automatic pipeline and deployment in pre-production cluster

wait for
promotion

Submit code update deployment
manager

Argo
CD

K8s Test Cluster (https://accel-webapp-dev.slac.stanford.edu) K8s Production Cluster (https://accel-webapp.slac.stanford.edu)

Mongo
DB

Postgres
SQL

Automatic
deployment Application

artifact Argo
CD

Automatic
deployment

TID
Authentication
Authorization

HTTPS
hostname

management
Kubernetes infrastructure

monitor/alarm (grafana)
infrastructure

IT infrastructure

Oracle
DB

MCCO &
external services

- ArgoCD (Declarative Continuous Delivery for Kubernetes) https://github.com/argoproj/argo-cd

Mongo
DB

Postgres
SQL

update
deploy conf

MinIO (cloud storage)

Manual started pipeline and deployment in production cluster

	Slide 1
	Slide 2: Agenda
	Slide 3: ELOG Proof of Concept
	Slide 4: ELOG Proof of Concept
	Slide 5: ELOG Proof of Concept – MCC data structure
	Slide 6: ELOG Proof of Concept – Physics data structure
	Slide 7: ELOG Proof of Concept – MCC vs Physics log structure
	Slide 8: Proof of concept architecture
	Slide 9: Overview of new application Kubernetes architecture
	Slide 10: Overview of new application Kubernetes architecture
	Slide 11

