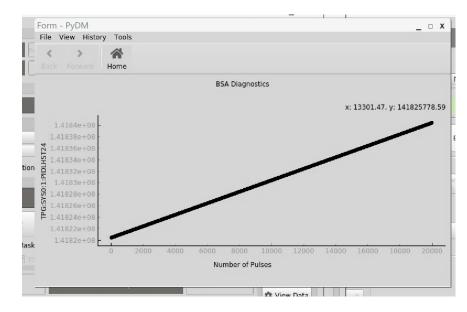
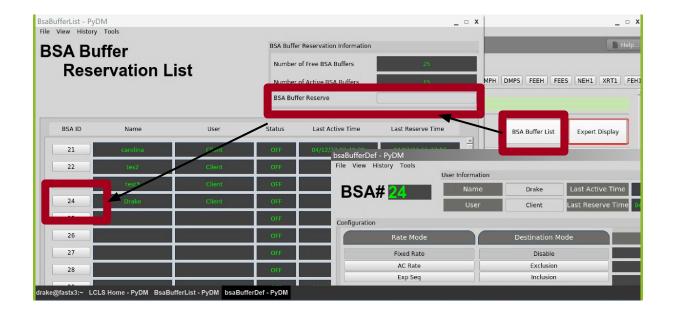
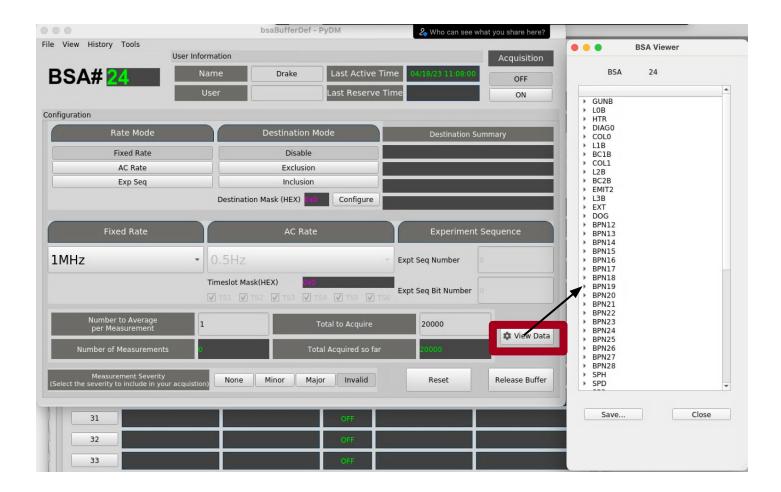
SC Timing System: BSA Plot and Diagnostic Tool

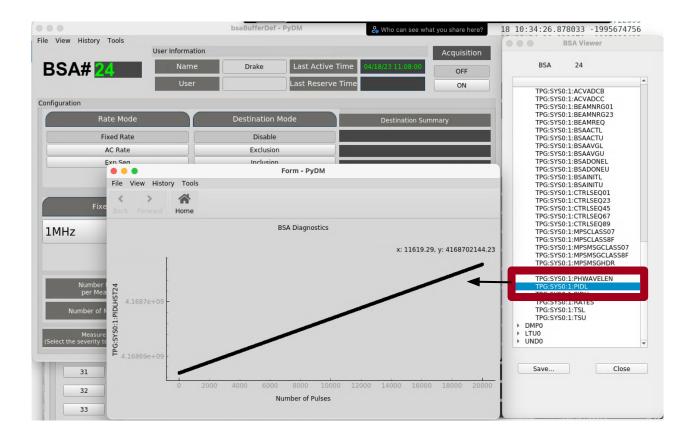

Drake Jha April 20th, 2023

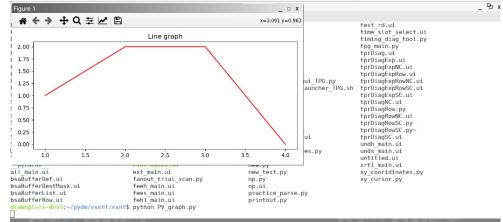

BSA Plot

- The BSA (Beam Synchronous Acquisition) reads pulse by pulse signals across many devices and publishes it in waveforms.
- lclshome & —> SC —> Event —-> BSA Buffer List —> (Click on a BSA ID number) —> View Data —> (select PV from drop-down menu) —> BSA plot will appear



• From the BSA PyDM Interface, after collecting data, it is now possible to view a signal waveform in time.





BSA Plot

• Started by making a PyQt graph that could plot data from two arrays in .py file:

- Then I needed to incorporate the .py and .ui files together, at the beginning I did a lot of the PyDM functionalities in the python file
- Also, I needed to get the data from the process variables (PVs) as macros

• Received different parts of the PVs as macros from a related display or the command line, then parsed and constructed them, then used 'caget' function to get value:

```
class PV plot(Display, OtWidgets.QMainWindow):
   def init (self, parent=None, args=None, macros=None):
        super(PV plot, self). init (parent=parent, args=args, macros=None)
        pv parts = ''
        counter = len(macros)
        for key in macros:
                if not key == 'BSA ID':
                        pv parts += (macros[key])
                        if counter > 1:
                                pv parts += ':'
                counter -= 1
        y channel = pv parts + 'HST' + macros['BSA ID']
        x channel = 'BSA:SYS0:1:' + macros['BSA ID'] + ':CNT'
        pv lst = [y channel, x channel]
        pv values lst = epics.caget many(pv lst, timeout=0.1)
        y values = pv values lst[0]
        x values = [1]
-- INSERT --
```

• Tapped into attributes of PyDMWaveformPlot to do some of the functionalities manually :

self.curve.redrawCurve()

```
self.PyDMWaveformPlot.addAxis(self.curve, 'Axis 1', 'left', y_channel)
self.PyDMWaveformPlot.addChannel(redraw_mode=1, yAxisName='Axis 1')
self.PyDMWaveformPlot.addCurve(self.curve, y_axis_name = 'Axis 1')
self.PyDMLabel_4.setText(x_channel)
```

```
self.curve = widgets.waveformplot.WaveformCurveItem(color=QColor(0, 0, 0))
arr_1 = numpy.array(x_values)
self.curve.receiveXWaveform(arr_1)
```

 Then transitioned to receiving data and plotting Waveform in Designer def ui_filename(self):

```
return 'BSA plot.ui'
```

- For most of the project I was trying to use Scatterplot, but at the end, I switched to using the Waveform Plot because the Scatterplot could only plot scalar values
- Used PV channel address in PyDm:

Curves	Axes							
Y Chan	nel X	(Channel	Style	Label	Color	Y-Axis Name	Line Style	Line
\${PV}HST	\${BSA_ID	·}			black	\${PV}HST\$	Dot	1

• Another big part of this project was making the mouse coordinate feature on the plot:

BSA Diagnostics

x: 150.7, y: 2841018170.19

proxy = pg.SignalProxy(self.PyDMWaveformPlot.scene().sigMouseMoved, rateLimit=60, slot=self.mouseMoved)
proxy.signal.connect(self.mouseMoved)

def ui_filename(self):

def ui filepath(self):

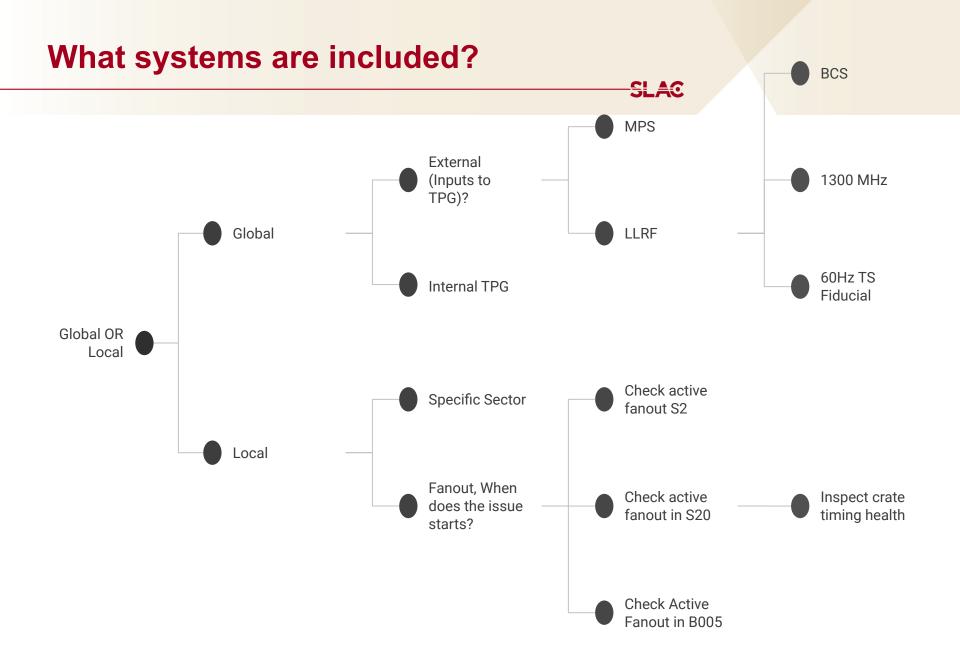
return path.join(path.dirname(path.realpath(file)), self.ui filename())

def mouseMoved(self, evnt):

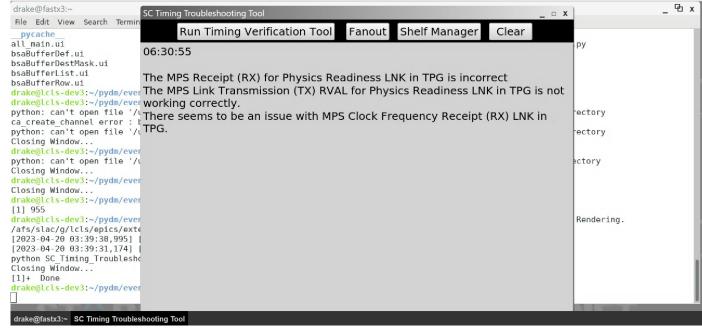
```
mousePoint = self.PyDMWaveformPlot._curves[0].mapFromScene(evnt)
self.PyDMLabel.setText('x' + ': ' + str(round(mousePoint.x(), 2)) + ', y: ' + str(round(mousePoint.y(), 2)))
```

```
-- INSERT --
```

File Network


• A lot of testing was done to verify the connection between displays. The 'View Data' button calls the directory service through python code and makes a list of BSA PVs in a Python-QT widget list.

View History Tools	b	osaBufferDef - PyDM	🏖 Who can see w	hat you share here?		
	er Information			Acquisition	BSA BSA	Viewer
BSA# 24	Name	Drake Last Active Tin	ne 04/18/23 11:08:00	OFF	BSA 2	4
	User	Last Reserve Ti	me	ON		
nfiguration					GUNB LOB HTR	
Rate Mode		Destination Mode	Destination Su	ummary	DIAG0 COL0	
Fixed Rate		Disable			 L1B BC1B 	
AC Rate		Exclusion			 COL1 L2B 	
Exp Seq		Inclusion			BC2B EMIT2	
	Destination M	Mask (HEX) 0x0 Configure			L3B ► EXT	
					► DOG ► BPN12	
Fixed Rate		AC Rate	Experiment	Sequence	BPN12 BPN13 BPN14	
1MHz	• 0.5Hz		Expt Seq Number	0	 BPN15 BPN16 	
	Timeslot Mask(H	HEX) 0x0			 BPN17 BPN18 BPN19 	
	▼ TS1 ▼ TS2	. ▼ TS3 ▼ TS4 ▼ TS5 ▼ TS6	Expt Seq Bit Number	0	▶ BPN20 ▶ BPN21	
Number to Average per Measurement	1	Total to Acquire	20000		 BPN22 BPN23 BPN24 	
Number of Measurements		Total Acquired so far	20000	🌣 View Data	 ▶ BPN25 ▶ BPN26 	
Number of Measurements	Ľ	Total Acquired so fai	20000		 BPN27 BPN28 	
					> SPH	
Measurement Severity (Select the severity to include in your acc	None None	Minor Major Invalid	Reset	Release Buffer		
Measurement Severity Select the severity to include in your act	quistion) None	Minor Major Invalid	Reset	Release Buffer	▶ SPD	
Measurement Severity Select the severity to include in your act	quistion) None	Minor Major Invalid	Reset	Release Buffer		Close
(Select the severity to include in your ac	equistion) None		Reset	Release Buffer	► SPD	Close


• Tool developed to give a diagnostic report back regarding instabilities in the timing system, starting panel:

SC Timing Verification Tool: Example:

• Checks the input and outputs to the SC Timing System. The program then delivers a message indicating if there is an issue and provides a clue to fix the issue.

• Coming Soon... UI to query timing signal health on shelf managers and TPRs

• The program is four .py files:

- SCTimingVerificationTool.py
- SC_Shelf_Manager_PV_Test_Panel.py
- SC_Fanout_PV_Test_Panel.py
- SC_Timing_Troubleshooting_Tool.py
- First underwent checks in the TPG system using 'caget' to get the values of the PVs

```
TPG_pv_lst = ['TPG:SYS0:1:COUNTBRT', 'TPG:SYS0:1:MPSLNK:PHYREADYRX', 'TPG:SYS0:1:MPSLNK:PHYREADYRX.RVAL', 'TPG:SYS0:1:MPSLNK:PHYREADYRX', 'TPG:SYS0', TPG:SYS0', 
YTX', 'TPG:SYS0:1:MPSLNK:PHYREADYTX.RVAL', 'TPG:SYS0:1:RATETXCLK', 'TPG:SYS0:1:MPSLNK:RXCL0CKFREQ', 'TPG:SYS0:1:MPSLNK:TXCL0CKFREQ']
                   caget many values TPG = epics.caget many(TPG pv lst, timeout = 0.1)
                   if not caget many values TPG[0] == 910000:
                                       print('The TPG might not be working properly as the Frequency readback is not = 910000, please contact: C. B. Mattison')
                   if not caget many values TPG[1] == 'Ready':
                                       print('The MPS Receipt (RX) for Physics Readiness LNK in TPG is incorrect')
                   if not caget many values TPG[2] == 1.0:
                                       print('The MPS Link Receipt (RX) RVAL for Physics Readiness LNK in TPG is not working correctly.')
                   if not caget many values TPG[3] == 'Ready':
                                       print('The MPS Link Transmission (TX) RVAL for Physics Readiness LNK in TPG is not working correctly.')
                   if not caget many values TPG[4] == 1.0:
                                       print('The MPS Transmission (TX) RVAL for Physics Readiness LNK in TPG is incorrect')
                   if not 184.0 <= caget many values TPG[5] <= 190.0:
                                       print( 'The Transmission (TX) RATE Clock in TPG is out of range')
                   if not caget many values TPG[6] == 250000100:
                                       print( 'There seems to be an issue with MPS Clock Frequency Receipt (RX) LNK in TPG.')
```

• Used PyQT to construct the UI's of the panels:

def init (self):

QMainWindow.__init__(self)
QDesktopWidget.__init__(self)

x = round(self.width()*1.25) y = round(self.height()*1.25) self.setHinimumSize(OSIze(x, y)) # self.setWindowTitle('SC Fanout PV Tool*) self.setStyleSheet('background-color: black")

self.editorOutput = QPlainTextEdit(self)
self.editorOutput.resize(x, int(y*0.93))
self.editorOutput.move(0, int(y*0.07))

```
self.button_run = 0tWidgets.0PushButton(self, clicked=self.runCommand)
self.button_run.setText("Run Fanout")
self.button_run.move(int(x"0.5591), int(y"0.61))
self.button_run.adjustSize()
self.button_run.setStyleSheet("background-color : lightgrey")
self.button_tpg_script = 0tWidgets.0PushButton(self, clicked=self.run_TPG_script_command)
self.button_tpg_script.setText("x"0.145), self.button_run.height())
self.button_tpg_script.move(int(x"0.76065), int(y"0.61))
# self.button_tpg_script.adjustSize()
```

def __init__(self):

L

QMainWindow.__init__(self)
QDesktopWidget.__init__(self)

```
x = round(self.width()*1.25)
y = round(self.height()*1.25)
self.setMinimumSize(QSize(x, y))
```

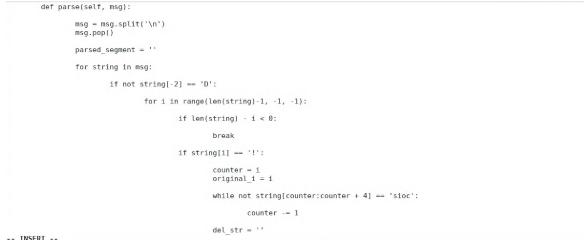
self.setWindowTitle("SC Shelf Manager PV Value Identification Tool")
self.setStyleSheet("background-color: black;")

self.editorOutput = QPlainTextEdit(self)
self.editorOutput.resize(x, int(y*0.93))
self.editorOutput.move(0, int(y*0.07))

self.button_run = 0tWidgets.0PushButton(self, clicked=self.runCommand) self.button_run.setText("Run Shelf Manager") self.button_run.move(int(x*0.56), int(y*0.01)) self.button_run.adjustSize() self.button_run.sesize(int(x*0.25), self.button_run.height()) self.button_run.setStyleSheet("background-color : lightgrey")

self.PV_input_box = QPlainTextEdit(self) self.PV_input_box.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.PV_input_box.resize(int(x*8.553), self.button_run.height()) self.PV input box.move(int(x*8.005), int(y*8.01))

Updating the command line environment was a big challenge for me, but it was needed so the IPMI commands could be read from shelf manager


def update env2(self, script path):

if not '--child' in sys.argv:

os.execl('/bin/bash', '/bin/bash', '-c', 'source %s; %s %s --child' % (script path, quote(sys.executable), quote(sys

.argv[0])))

Also, I had to parse the message from shelf manager PV. Instead of using the Python function, I made my own recursive method:

What I Learned From These Projects

- Python: EPICS (Channel Access Control System Module), PyQt (Python Graphical User Interface Module)
- GIT and CVS (version control systems)
- User interface (UI) experience
- Controls software and timing
- Accelerator complex hardware operations
- Data structures
- Macros
- PyDM
- Programming and problem solving concepts
- Communication and collaboration skills

<u>SLAO</u>

Thank You/Acknowledgments

Special Thank You to Carolina Bianchini Mattison, Matt Gibbs and Ryan McClanahan