
RTEMS & NFSv2
Tuning for reliable operation

Jeremy Lorelli

Technology Innovation Directorate - Instrumentation Division
Controls Software Engineering Department
Embedded Systems Group

January 25th, 2024

Outline
• Background

• Overview & RPC Implementation Details

• Investigation & Diagnostics

• Patching RTEMS

• Deploying RTEMS Releases

• Closing Remarks

Background 2

Background
• RTEMS = Real-Time Executive for Multiprocessor Systems

• Used to be “Real-Time Executive for Military Systems”

• And before that: “Real-Time Executive for Missile Systems”

• Real-time operating system (RTOS)

• No concept of userspace

• Networking stack

• RTEMS 6+ libbsd is FreeBSD 12 based

• RTEMS 5 and below use older FreeBSD-based networking stack (aka “legacy networking stack”)

• SLAC runs RTEMS 4.9.4 and 4.10.2 today

• Used to use 4.7.X and earlier versions of 4.9.X/4.10.X

• Legacy networking:

• NFSv2 only, driver written by Till Straumann for SLAC

• NFSv2 (circa ~1990)

• RPC based protocol

• UDP only

• UDP = no transport layer reliability

• NFSv4 adds support for TCP

Background 3

Overview
• Certain RTEMS IOCs fail to write autosave files

• Some partially succeed, others are completely unable

• They don’t seem to recover without a reboot

• Network conditions are fine

• Seems to be exclusive to RTEMS IOCs

• Reported off an on for ~10 years

• Spring 2023 power outage seems to have triggered the issue at large

• Prior to this, it was not observed as frequently

• Some initial theories we had

• Bad network cards, damaged by power outage

• Bad network switch causing excessive packet loss/damage

• Previously fixed RPC/NFS driver bug has resurfaced

• NFS server bug

• CATERs: #146947, #162668, #164090, #166516, #97639

Overview 4

NFS/RPC Driver Details
• UDP is simple & stateless, so reliability must be implemented by the driver

• RFC 5531 (RPC v2) defines an “XID” to make room for reliability over

UDP

• Reliability implemented using a “retry period”

• If RPCIOD doesn’t receive a reply to the request within the period of

time defined by the retry period, it retransmits the request

• Same XID, same data

• Mitigates the effect of packet loss or NFS server errors

• The retry period is variable

• Adjusted based on round trip time

• Increased by 2x after each retry

NFS/RPC Driver Details 5

while True:
 while xact = sockRcv():
 nodeXtract(xact.node)
 # Ensure xid does not re-appear in table
 xact.xid += XACT_HASHS
 rtt = computeRoundTrip(xact)
 retry_period = computeRetryPeriod(rtt)
 wakeRequestor()

 for xact in newToSend:
 xact.age = now
 xact.trip = FIRST_ATTEMPT
 addToList(pendingTransactions, xact)

 # Handle the timeout queue
 for xact in pendingTransactions:
 if xact.tolive <= 0:
 xact.xid += XACT_HASHS
 xact.status = TIMEDOUT
 timeoutStats()
 else:
 res = sendTo(socket, xact)
 if not res:
 handleError()
 if not isFirstTry(xact):
 retry *= 2
 xact.trip = now
 xact.tolive -= timeSinceLastIter

 # Sleep until we need to retransmit one
 wakeThreadAfter(pendingTransactions[0].tolive)

RPC Control Flow Pseudocode

Investigation: DEV
• Testing done on ioc-b34-bp01

• Thanks Sonya!

• mvme-6100, BPM IOC

• Initial test code

• Read/write to IOC data directory in a loop every ~5 seconds

• Random patterns, different file sizes up to 1M

• Developed a small suite of networking utils for RTEMS, as an analogue to busybox/coreutils

for Linux

• ping, traceroute, packet loss checking tool

• Packet sniffing using IOTA 10G+ from Profitap

Investigation & Diagnostics 6

Investigation: Results (DEV)
• No packet loss, low latency, overall good network conditions

• File I/O fails at a low rate

• Over a 72 hour test period, 4 file I/O calls failed due to timeout

• Lots of retransmissions being attempted by the RPCIO driver

• Variable retry period seems to hover around ~8ms (as reported by rpcUdpStats())

• This seems excessive…

• Pattern in error spew from ioc-b34-bp01

• Between 7:30-7:34AM every morning, RPC times out

• Turns out there were cronjobs dumping SQL databases at that time every morning

• surrey04b has a 1GB NIC that is easily saturated

• Murali staggered those cronjobs and modified the script to resolve the issue

Investigation & Diagnostics 7

Investigation: PROD
• The issues in DEV are unrelated

• Exposed NFS and network stats as PVs, integrated into iocAdmin

• Planning to merge this upstream into iocStats

• ~40 PVs total

• Deployed monitoring on ioc-li24-im01 in mid-December

• Also included:

• pvAccess resource leak fix

• minimum bound for the retry period

• Thanks to Kristi for the support!

• Stats collected over winter break, with some interesting results

Investigation & Diagnostics 8

IOC:LI24:IM01:NET_UDP_RECV
IOC:LI24:IM01:NET_UDP_SEND
IOC:LI24:IM01:NET_UDP_ERR
IOC:LI24:IM01:NET_TCP_RECV
IOC:LI24:IM01:NET_TCP_SEND
IOC:LI24:IM01:NET_TCP_ERR
IOC:LI24:IM01:NFS_0_MOUNT
IOC:LI24:IM01:NFS_0_REQ_CNT
IOC:LI24:IM01:NFS_0_RETRY_CNT
IOC:LI24:IM01:NFS_0_ERR_CNT
IOC:LI24:IM01:NFS_0_TIMEOUT_CNT
IOC:LI24:IM01:NFS_0_RETRY_PERIOD
IOC:LI24:IM01:NFS_0_NODE_CNT
… (up until NFS_4)

Investigation: Results (PROD)
• Period of interest is December 20th to January 4th

Investigation & Diagnostics 9

Green = retry period

Orange = total number of retries

Red = Timeouts

Blue = errors

Periodic spikes in retry period indicate
>1 retried/lost packet, or slowdowns
in NFS server response time

Retry count line is not perfectly
linear. Periodic spikes of retries

Retry period minimum
bound is configured to

be 25ms here

Data shown here is with a 25ms lower
bound on the retry period

Investigation: PROD (Results)
• Period of interest is January 5th to 10th

Investigation & Diagnostics 10

Green = retry period

Orange = total number of retries

Red = Timeouts

Blue = errors

Point where retry period
min set to 0ms

Thousands of
retries

Retry period being adjusted
massively, bouncing between

~600ms and 8ms

Timeout count is now
proportional with

retry count
(increasing linearly)

Data shown here is with a 0ms lower
bound on the retry period

(pre-patched state)

Patching RTEMS
• To mitigate the issue, we need to:

• Adjust retry period equation, including bounds to prevent it from dropping too low

• Add function that can be called from cexpsh to adjust limits and eq

• Summary of changes:

• Adjusted retry period equation, imposed min/max bound on retry period

• Added rpcUdpSetRetryParams to change retry period equation parameters

• Although they’re tweakable, the defaults are tuned well enough

• Only RTEMS and ssrlApps will need to be recompiled

• Tested on: ioc-b34-bp01, ioc-li24-im01. Both mvme-6100, 4.10.2

• Default settings equivalent to:

// min (ms), max (ms), multiplier, influence fraction

rpcUdpSetRetryParams(25, 3000, 8, 0.25)

• Defaults are already tuned, this function is available for future proofing

Patching RTEMS 11

Deploying RTEMS Releases
• Pull request pending: https://github.com/slaclab/rtems/pull/1 (Branch: 4.10.2_PR_rpcio_retry_period)

• Once merged:

• RTEMS 4.10.2 -> tag 4.10.2_slac_p3-1.0

• RTEMS 4.9.4 -> tag 4.9.4_slac_p3-1.0

• When booting, you should see:

Welcome to RTEMS 4.10.2-slac_p3-1.0 GeSys

• What’s the best strategy for deployment?

• Option 1: New patch level (i.e. rtems_p4)

• EPICS base will need modification to point at the right place, IOCs will need to be recompiled, dhcp changes

• We will need to do this once Till fixes the other RTEMS bugs regardless

• Option 2: Recompile rtems_p3 in place

• In this case, IOCs simply need to be rebooted to get the fix

• This is the method we recommend

• Option 3: Wait until other RTEMS bugs are fixed, then release new patch level

Deploying RTEMS Releases 12

https://github.com/slaclab/rtems/pull/1

Deploying RTEMS Releases
• Rolling back to previous release:

• 4.10.2_slac_p3-1.0 -> 4.10.2_slac_p3

• 4.9.4_slac_p3-1.0 -> 4.9.4_slac_p3

• Rebuild both RTEMS and ssrlApps

Deploying RTEMS Releases 13

Closing Remarks
• Thanks to Kristi, Sonya and Till Straumann for their support

• RTEMS and RTEMS related drivers have been moved to GitHub

• Good way to facilitate collaboration with Till and other RTEMS developers at SLAC

• TID-ID-CSE has been moving packages and EPICS modules to GitHub ahead of AFS decommissioning

• Links are in the next slide

• Providing configuration options for tunable parameters, like the retry period, should be the standard

• Limits and other equation parameters tunable using rpcUdpSetRetryParams

• If this becomes a problem again in the future, can be fixed by only changing scripts

• I have free RTEMS stickers!

Closing Remarks 14

Sources & Links

• https://datatracker.ietf.org/doc/html/rfc5531 (RPC, version 2)

• https://github.com/slaclab/rtems

• https://github.com/slaclab/rtems-svgm-bsp

• https://github.com/slaclab/if_gfe-rtems

• https://github.com/slaclab/rtems-beatnik-bsp

• https://github.com/slaclab/ssrl-ppc-bsp-vectors

• https://github.com/slaclab/porting-bsd-rtems

• https://github.com/slaclab/if_ex-rtems

• https://github.com/slaclab/if_em-rtems

Links 15

https://datatracker.ietf.org/doc/html/rfc5531
https://github.com/slaclab/rtems
https://github.com/slaclab/rtems-svgm-bsp
https://github.com/slaclab/if_gfe-rtems
https://github.com/slaclab/rtems-beatnik-bsp
https://github.com/slaclab/ssrl-ppc-bsp-vectors
https://github.com/slaclab/porting-bsd-rtems
https://github.com/slaclab/if_ex-rtems
https://github.com/slaclab/if_em-rtems

Patch (reference)
• cpukit/libfs/src/nfsclient/src/rpc.c, line 1308-1324 (this is the most important part of the patch)

Patching RTEMS 16

• T = round trip time

• A = integral multiplier of round trip time

• N = Numerator of influence frac

• M = Denom of influence frac, constrained to

power of two to allow use of right shift

Clamp is the most important part!

