2021 Data Reconstruction: SVT Wire Target Analysis

Norman Graf (SLAC)
Pass0 Analysis
November 17, 2022

What's New? Tracker

- Pass0 has been finalized.
- A new detector was released
a HPS_Run2021Pass0_v1_1pt92GeV
- A new release hps-java 5.2 was made.
- Have reconstructed the two runs which used the SVT positioning wires as targets
- 014753 SVT bottom wire at $z=34.544 \mathrm{~mm}$
- 014754 SVT top wire at $z=20.600 \mathrm{~mm}$
- Use both electron and positron tracks when fitting to a common vertex. Opposite sign should reduce systematics and improve resolution of the vertex determination.
- Previous analysis reported results using an older alignment.

Bottom wire E \& p (old)

Bottom wire E \& p (new)

Bottom wire Nhits (old)

track sign top

nhits track top electron

nhits track top positron

Bottom wire Nhits (new)

track sign top

nhits track top electron

nhits track top positron

Bottom wire Vertex position (old)

Bottom wire Vertex position (new)

Bottom wire Vertex z (old)

hps_014753 Bottom Wire Target Vertex Z Position

Bottom wire Vertex z (new)

Gaussian Fit jminuit fit - vtx_z_top

Top wire E \& p (old)

track momentum bottom electron

Top wire E \& p (new)

cluster energy bottom electron

track momentum bottom electron

cluster energy bottom positron

track momentum bottom positron

Top wire Nhits (old)

track sign bottom

nhits track bottom electron

nhits track bottom positron

Top wire Nhits (new)

track sign bottom

nhits track bottom electron

nhits track bottom positron

Top wire Vertex position (old)

Top wire Vertex position (new)

Top wire Vertex z (old)

hps_014754 Top Wire Target Vertex Z Position

Top wire Vertex z (new)

Gaussian Fit jminuit fit - vtx_z_bottom

Latest SVT Wire Position Analysis

svtWireTargetAnalysis_20221117.aida - MultiEventVtx

svtWireTargetAnalysis_20221117.aida - MultiEventVtx

svtWireTargetAnalysis_20221117.aida - MultiEventVtx

svtWireTargetAnalysis_20221117.aida - MultiEventVtx

Vertex Position

- Using the top wire as a target, we vertex bottom tracks and find a z distribution peaked at $\sim 13 \mathrm{~mm}$ to be compared with a measured position of 20.600 mm for the top wire
- $\Delta z=12-20.600=-8.6 \mathrm{~mm}$ (old)
- $\Delta z=13.233-20.600=-7.367 \mathrm{~mm}$ (new)
- Using the bottom wire as a target, we vertex top tracks and find a z distribution peaked at $\sim 28 \mathrm{~mm}$ to be compared with a measured position of 34.544 mm for the top wire
- $\Delta z=28-34.544=-6.5 \mathrm{~mm}$ (old)
- $\Delta z=28.555-34.544=-5.989$ (new)
- Are we really still off by almost a centimeter!?
- Check if we can at least measure the relative distance between the two wires
28.555-13.233 = 15.322 (measured)
compared to :
$34.544-20.600=13.944$ (predicted)
So, off by -1.378

Next Steps

The data taken using the SVT positioning wires (runs 14753 and 14754) should be used when imposing a beamspot constraint

- 01753 SVT beamspot at ($0.0,0.2,34.544$)
- 01754 SVT beamspot at ($0.0,0.2,20.600$)
- recall that beam was elevated $\sim 200 \mu \mathrm{~m}$ to give us similar tracker acceptance in top and bottom

