
ADQAPI
User Guide

Author(s): Teledyne SP Devices

Document ID: 08-0214

Classification: Public

Revision: 65395

Print date: 2022-05-04

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Contents

1 Introduction 3

1.1 Definitions and Abbreviations . 3

2 Overview 3

2.1 Running on Windows . 4

2.2 Running on Linux . 5

3 API 6

3.1 ADQAPI Objects . 6

3.2 ADQAPI function calls . 6

3.3 C API . 6

3.4 C++ API . 7

3.5 Matlab . 7

3.6 .NET . 8

3.7 Python . 8

3.8 Identifying and setting up a device for operation . 8

3.8.1 Using FindDevices() . 8

3.8.2 Using ListDevices() (advanced) . 9

4 Application Programming Flowchart 11

4.1 Acquisition mode: Multi-record . 11

4.2 Acquisition mode: Triggered streaming . 12

4.3 Acquisition mode: Streaming . 14

5 Multithreading 15

5.1 Recommendation . 15

6 Troubleshooting 16

7 Code Examples 17

7.1 Overview . 17

7.2 Definitions . 18

7.3 C/C++ Language examples . 18

7.3.1 data_readout.zip . 18

7.3.2 data_transfer_gpu_amd.zip . 19

7.3.3 data_transfer_gpu_nvidia_through_host.zip . 19

7.3.4 ADQAPI_simple_example . 20

7.3.5 ADQAPI_example . 21

7.3.6 ADQAPI_transfer_test_example . 22

7.3.7 ADQAPI_FWATD_example . 22

7.3.8 ADQAPI_FWPD_example . 23

7.4 Python Language examples . 24

7.4.1 adq3_series_example.py . 24

7.4.2 adq14_adq7_adq8_streaming_example.py . 25

ADQAPI — User Guide spdevices.com Page 1 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7.4.3 adq14_adq7_adq8_multirecord_example.py . 25

7.4.4 adq14_adq7_adq8_streaming_oscilloscope_view.py 26

7.4.5 ADQ214_example.py . 26

7.4.6 sdr14tx_fileoutput.py . 27

7.4.7 sdr14tx_toneoutput.py . 27

7.4.8 sdr14tx_Playlist_example.py . 28

7.5 MATLAB Language examples . 29

7.5.1 ADQ7_ts_example_script.m . 29

7.5.2 ADQ14_ts_example_script.m . 29

7.5.3 ADQ14_example_script.m . 30

7.5.4 SDR14_AWG_Playlist_example.m . 30

7.6 C# Language examples . 31

7.6.1 ADQAPI_CSharp_example . 31

7.7 VisualBasic Language examples . 31

7.7.1 ADQAPI_VisualBasic_Example . 31

ADQAPI — User Guide spdevices.com Page 2 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

1 Introduction

This document contains instructions and guidelines of how to use the ADQAPI from different program-

ming languages to control a TSPD digitizer.

1.1 Definitions and Abbreviations

Table 1 lists the definitions and abbreviations used in this document.

Table 1: Definitions and abbreviations used in this document.

Item Description

ADQAPI The Application Programming Interface for a digitizer.

DLL Dynamic Link Library (Windows code library)

ADQAPI.dll The Windows Dynamic Link Library containing the ADQAPI im-

plementation.

libadq.so In Linux, this is the library containing the ADQAPI implementa-

tion.

MEX The interface method used for MATLAB.

Waveform Averaging Feature for hardware supported averaging for V5/V6 products.

FWDAQ Standard firmware forADQ32/ADQ36/ADQ14/ADQ12/ADQ7/ADQ8

for data acquisition.

FWATD Specific firmware forADQ14/ADQ12/ADQ7 for hardware sup-

ported averaging.

FWPD Specific firmware for ADQ14/ADQ12/ADQ7 for data-driven

Pulse Detection applications.

FWDDM Specific firmware for ADQ7 for disk drive measurement appli-

cations

FWSDR / FW2DDC /

FW4DDC

Specific firmwares for ADQ14/ADQ12/ADQ7 for Software De-

fined Radio.

2 Overview

The ADQAPI provides a simple and powerful programming interface to ADQ devices. The programming

interface handles all communication with the connected ADQ devices with a few highly abstracted func-

tions. The API is available for Windows and Linux and provides access through several programming

languages. The user application can be implemented in for instance Python, TCL, C, C++, C#, MATLAB

or LabView making use of calls into the API library.

ADQAPI — User Guide spdevices.com Page 3 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Implemented in
driver kernel

code

Implemented in
ADQAPI.dll

User Application
Programming
interface (API)

Driver for USB, PCIe or
Ethernet

ADQ Digitizer

Host Computer

USB
PCIe
PXIe
MTCA
Ethernet

Figure 1: A block diagram showing the structure of the software.

2.1 Running on Windows

These classes are encapsulated in a DLL file and interfaced via a function set where the user specifies

which ADQ device to communicate with. The interface consists of three files:

ADQAPI.lib

This file must be linked to the code project for the program to compile successfully.

ADQAPI.dll

This dynamic linked library must be located in the same directory as the compiled program or

have a proper path for it set up. When SP Devices software development kit (SDK) is installed,

this DLL is copied to the windows DLL directory and will always be accessible.

ADQAPI.h

A header file that must be linked to the code project for declaration of the ADQAPI function set.

This is used for programming in C/C++. Other languages, need a modified header file.

The SDK installation provides three different versions of these files. If the code project is compiled on

a on a 32-bit system, the files in the ADQAPI folder must be used. If the code project is compiled on a

64-bit system, the files in ADQAPI_64/ must be used for 64-bit applications and the files in ADQAPI_32_64/
should be used for 32-bit applications.

ADQAPI — User Guide spdevices.com Page 4 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

 Important

The correct API version must be selected when building the code otherwise the API will throw

an error code of [0x00000001 ERROR_CODE_ADQAPI_NOT_BUILT_FOR_CORRECT_OS] and exit execution

unsuccessfully during FindDevices() or ListDevices() call. This error code can be read via

the API ADQControlUnit_GetLastFailedDeviceError() or in the ADQControlUnit log file (called

spd_adqcontrolunit_trace.log, if enabled by ADQControlUnit_EnableErrorTrace().

2.2 Running on Linux

The LinuxADQ library providingADQAPI will follow existing naming conventions and will be called libadq

(libadq.so). If installed from a package, the library will be installed in /usr/lib and the API header

(ADQAPI.h) will be installed in /usr/include. Instructions on how to install and use the ADQAPI on

Linux are found in the installation package. On Linux, the ADQAPI only supports 64-bit systems.

ADQAPI — User Guide spdevices.com Page 5 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

3 API

This section describes the structure of the ADQAPI and the methods of using it from different program-

ming languages.

3.1 ADQAPI Objects

The ADQAPI uses these types of objects (classes):

ADQControlUnit

An object that manages the connection between the digitizers and the host computer. The ADQ-

ControlUnit creates objects of type ADQ36, ADQ32, ADQ33, ADQ8, ADQ7, ADQ14, ADQ12,

ADQDSP, DSU, SDR14, SDR14TX, ADQ212, ADQ412, ADQ108, ADQ208, ADQ1600, ADQ112,

ADQ114 and ADQ214 when finding devices over the available interfaces.

ADQ specific objects

Class objects that handles the communication with each device.

3.2 ADQAPI function calls

The functions of the ADQAPI are categorized into three main sets:

ADQAPI specific functions

Functions purely related to the API itself and not to the operation of digitizers.

ADQControlUnit functions

Functions used to interface with the device driver for tasks such as finding and initializing digitizers.

ADQ functions

Functions used to interface directly with a specific digitizer.

The functions of theADQAPI may be called in several ways. Typically, they are interfaced as C-functions,

but they may also be interfaced directly through an C++ class object. On Windows, the functions may

also be interfaced through a Matlab MEX file or the .NET framework.

 Note

Using the API method FindDevices() is not intended for systems with more than one digitizer when

operated from different application instances. See Section 3.8 for more information.

3.3 C API

When interfacing the C API, all functions other than the ADQControlUnit functions and the ADQAPI-

specific functions are called by prefixing the function name with ADQ_ and adding the previously created

ADQControlUnit and the unit ID as inputs. Below is a simple example of how to setup a unit and call the

Blink() function using the C API:

ADQAPI — User Guide spdevices.com Page 6 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

void* adq_cu_ptr = CreateADQControlUnit(); // Creates an ADQControlUnit called adq_cu_ptr

// Next line configures the ADQAPI to write logfiles for any errors occurred in the current directory
ADQControlUnit_EnableErrorTrace(adq_cu_ptr, LOG_LEVEL_ERROR, ”.”);

if(adq_cu_ptr != NULL)
{

int nof_devices = ADQControlUnit_FindDevices(); // Finds and starts all devices, also returns the number started
if (nof_devices > 0)
{

ADQ_Blink(adq_cu_ptr, 1); // Blinks one of the LEDs for the device number 1 (the first started)
}

}
DeleteADQControlUnit(adq_cu_ptr);

The C API may be used from several programming languages (e.g. Python has excellent support for

this), which makes it the most general.

3.4 C++ API

Once anADQControlUnit is created and at least one unit has been found, the function ADQControlUnit_-
GetADQ() may be used to return a pointer a C++ class object that can be used to access all functions that

operates on the unit. These functions are called with the name and inputs listed later in the document.

Below is a simple example of how to set up a unit and call the Blink() function using the C++ API:

void* adq_cu_ptr = CreateADQControlUnit(); // Creates an ADQControlUnit called adq_cu_ptr

// Next line configures the ADQAPI to write logfiles for any errors occurred in the current directory
ADQControlUnit_EnableErrorTrace(adq_cu_ptr, LOG_LEVEL_ERROR, ”.”);

if(adq_cu_ptr != NULL)
{

int nof_devices = ADQControlUnit_FindDevices(); // Finds and starts all devices, also returns the number started
if (nof_devices > 0)
{

ADQInterface* ADQDevice = ADQControlUnit_GetADQ(adq_cu_ptr, 1); // Sends command to device number 1 (the first started)
ADQDevice->Blink(); // Blinks one of the device LEDs

}
}
DeleteADQControlUnit(adq_cu_ptr);

The ADQControlUnit functions and the ADQAPI specific functions are always interfaced as C API

functions.

 Note

The difference between using C and C++ style API calls is only on the calling syntax, the exact same

API functions and arguments are used. In C you supply the digitizer object reference as an argument,

and in C++ you instead call methods for an ADQInterface object you have earlier fetched a reference

to.

3.5 Matlab

On Windows, there is an interface that should feel familiar for Matlab users. This is implemented in the

DLL called mex_ADQ.dll, which is installed with the other DLLs. For convenient interfacing, there is also
a wrapper file called interface_ADQ.m. The API calls, On Linux there is no provided specific MATLAB

interface support.

ADQAPI — User Guide spdevices.com Page 7 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

 Note

All existing API calls are not implemented for the MATLAB interface and will give errors if executed.

 Important

The ADQ3 series of products, ADQ32, ADQ33 and ADQ36 do not have support for MATLAB.

3.6 .NET

For users of the .NET framework, the ADQAPI has been wrapped using SWIG. The wrapper DLLs are

installed together with the Windows installer. In the .NET framework, the C API functions are interfaced

using a .NET class object. More information is found in the ADQAPI & .NET user guide [1].

3.7 Python

Python is supported through the provided pyADQ package. Excerpt from Python example to list and

setup all devices and then exit:

#!/usr/bin/env python3
Copyright 2022 Teledyne Signal Processing Devices Sweden AB
”””

This example will enumerate and initialize all devices and then exit
”””
import pyadq

print(”pyadq version:”, pyadq.__version__)

acu = pyadq.ADQControlUnit()

acu.ADQControlUnit_EnableErrorTrace(pyadq.LOG_LEVEL_INFO, ”.”)
device_list = acu.ListDevices()

print(f”Found len(device_list) device(s)”)
for index in range(len(device_list)):

with acu.SetupDevice(index) as dev:
print(dev)

3.8 Identifying and setting up a device for operation

FindDevices() is the easiest method to access the digitizer. In a system with one digitizer and one

application controlling it, this method works fine. However, using FindDevices() will find all digitizer

units in the system (regardless of interface types) and set them up to a new state regardless of if they

have been accessed earlier and/or is under operation from another application in the system. To use

different devices from different applications, all applications need to utilize the ListDevices() method

rather than the FindDevices() method

3.8.1 Using FindDevices()

Example of accessing a digitizer using FindDevices():

ADQAPI — User Guide spdevices.com Page 8 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

void* adq_cu_ptr = CreateADQControlUnit(); // Creates an ADQControlUnit called adq_cu_ptr

// Next line configures the ADQAPI to write logfiles for any errors occurred in the current directory
ADQControlUnit_EnableErrorTrace(adq_cu_ptr, LOG_LEVEL_ERROR, ”.”);

if(adq_cu_ptr != NULL)
{

int nof_devices = ADQControlUnit_FindDevices(); // Finds and starts all devices, also returns the number started
if (nof_devices > 0)
{

ADQ_Blink(adq_cu_ptr, 1); // Blinks one of the LEDs for the device number 1 (the first started)
}

}
DeleteADQControlUnit(adq_cu_ptr);

3.8.2 Using ListDevices() (advanced)

The ListDevices() method is more complicated to use, but allows different digitizers to be individually

accessed from different applications. As long as a device is not opened by two applications at the same

time, the control will work completely independent of eachother.

Instead of finding and setting up all digitizers in one single step, this method consists of three different

steps:

• ListDevices() – Obtains a list of all available digitizers. This will not access the digitizers them-

selves in any way.

• SetupDeviceInterface() – Opens the interface to a specific digitizer in the returned list.

• SetupDevice() – Sets up the digitizer for operation from this application.

 Note

When handling entries in the list from ListDevices(), the list is zero-based. When continuing to

access the digitizer through the API, the digitizer numbers are one-based.

A list entry is defined as:

struct ADQInfoListEntry
{

enum ADQHWIFEnum HWIFType;
enum ADQProductID_Enum ProductID;
unsigned int VendorID;
unsigned int AddressField1;
unsigned int AddressField2;
char DevFile[64];
unsigned int DeviceInterfaceOpened;
unsigned int DeviceSetupCompleted;

};

Example of accessing a digitizer using ListDevices():

struct ADQInfoListEntry* ADQlist;
int nof_devices;
int adq_num;
int adq_list_num;
int success;
void* adq_cu_ptr = CreateADQControlUnit(); // Creates an ADQControlUnit called adq_cu_ptr

ADQAPI — User Guide spdevices.com Page 9 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

// Next line configures the ADQAPI to write logfiles for any errors occurred in the current directory
ADQControlUnit_EnableErrorTrace(adq_cu_ptr, LOG_LEVEL_ERROR, ”.”);

if(adq_cu_ptr != NULL)
{

// Returns a list of all found devices in ADQList argument and number of devices in list in nof_devices argument
success = ADQControlUnit_ListDevices(adq_cu_ptr, &ADQlist, &nof_devices);
if (nof_devices > 0)
{

adq_list_num = 0; // There is at least one device, access first item.
success = success && ADQControlUnit_OpenDeviceInterface(adq_cu, adq_list_num));
success = success && ADQControlUnit_SetupDevice(adq_cu, adq_list_num);
adq_num = adq_list_num + 1; // Set accessed digitizer number to one + list number (one-based instead of zero-based).
if (success)
{
ADQ_Blink(adq_cu_ptr, adq_num); // Blinks one of the LEDs for the device number 1, the one setup

}
else
{
printf(”Failed accessing digitizer”);

}
}

}
DeleteADQControlUnit(adq_cu_ptr);

 Warning

Accessing a list item that is not inside the returned nof_devices range will access memory out of

bounds. This may cause segmentation fault or other memory corruption problems.

ADQAPI — User Guide spdevices.com Page 10 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

4 Application Programming Flowchart

The digitizer can be operated in several different acquisition modes. Some of them are described in this

section.

 Important

This section does not apply for the ADQ3 series of products, ADQ32/ADQ36. For these, please only

use the ADQ3 Series Manual [?]

4.1 Acquisition mode: Multi-record

The multi-record mode is used for triggering the unit several times in succession and store the data in

the on-board DRAM for later transfer. This means that data may be captured in real time, even if it may

not be transferred as quickly. To not lose any data, the data of interest must be downloaded from the

digitizer before the DRAM is full. Typical properties of a multi-record acquisition:

• Limited number of records.

• Total size contained inside DRAM size.

• Long pretrigger available (up to full record size).

• Rearm time is rather long: in the order of microseconds.

• Digitizer is capturing data, data is sent to host and then whole loop is armed again. See the

flowchart in Fig. 2.

ADQAPI — User Guide spdevices.com Page 11 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Wait for all
records to

be
collected

Create
ADQControlUnit

Run FindDevices

Select
trigger
mode,

clock etc.

Set the
number of
records &
samples

General Setup

Setup
MultiRecord

Arm Trigger

Transfer Records
with GetData

Disarm Unit

Delete
ADQControlUnit

T
y
p

ic
a

l
lo

o
p

 f
o

r
g

e
tt

in
g

 n
e

w
 d

a
ta

 s
e

t

Figure 2: A high level flowchart for the multi-record mode.

4.2 Acquisition mode: Triggered streaming

The triggered streaming mode is used for triggering devices and produce records, sent to the host com-

puter. There is an option to run triggered streaming in an infinite mode, meaning that it will continue to

produce records indefinitely.

 Note

Triggered streaming is only available on the products ADQ7, ADQ14, ADQ12 and ADQ81. There is

also some limited legacy support for ADQ412 andADQ214 (seeADQAPI Reference Guide [2] for more

information.

 Important

The recommended flow for triggered streaming on ADQ7, ADQ14 and ADQ8 is documented in a sep-

arate document and is not the same as the one presented in this section which is a legacy implemen-

tation flow (still fully supported but not recommended). Please refer to the user guide for streaming on

Gen3 digitizers [3] for more details.

• Limited or unlimited number of records.

1This is described in the user guide for streaming on Gen3 digitizers. [3]

ADQAPI — User Guide spdevices.com Page 12 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

• DRAM used as FIFO to secure no loss of data.

• Only short pretrigger length available (in the order of kiloSamples).

• Rearm time is short: in the order of tens of nanoseconds.

• Digitizer is capturing data, data is sent to host and then can go on until the user stops it. See the

flowchart in Fig. 3

Loop until desired
stop.

Create
ADQControlUnit

Run FindDevices

Select clock, sample
skip, trigger mode,

etc.

Set record size,
pre/posttrigger,
channelmask etc

General Setup

Triggered Streaming
Setup

Start Streaming

Check for available
buffers and get them

Stop Streaming

Delete
ADQControlUnit

Handle the record
data (user parse)

Process record in user
application

Figure 3: A high level flowchart for the triggered streaming mode.

ADQAPI — User Guide spdevices.com Page 13 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

4.3 Acquisition mode: Streaming

Streaming is used to continuously transfer data from the digitizer to the host computer. Because the

bandwidth of the interface is, in most cases, not sufficient to transfer data in real time, there are several

options to provide data reduction, for instance using sample skip or sample decimation. The streaming

interface can also be used to obtain data from custom firmware designs, in a raw fashion.

 Note

Sample decimation is only available for some product versions.

• No records, just raw data.

• DRAM used as FIFO to secure no loss of data.

• No concept of pre or posttrigger or trigger timing.

• Digitizer is capturing data, data is sent to host and then can go on until the user stops it.

Repeat this
step until
all data is
acquired

Create
ADQControlUnit

Run FindDevices

Select
clock,

sample
skip etc.

Set DMA
buffers and
streaming

mode

General Setup

Streaming Setup

Start Streaming

Copy data from
streaming buffers

Stop Streaming

Delete
ADQControlUnit

Figure 4: A high level flowchart for the streaming mode.

ADQAPI — User Guide spdevices.com Page 14 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

5 Multithreading

TheADQAPI is in general not thread safe. The rule is simple, it is not allowed to call anyAPI function that

communicates with the hardware from two different threads on the PC at the same time. It is strongly

recommend to keep all digitizer access control in one single thread and use other threads for handling

the data acquired, storing data acquired and other tasks.

Still, in some cases, it may be beneficial to use threading to communicate with devices and in those

cases we ask the user to contact technical support at Teledyne SP Devices to verify that commands used

in different threads do not suffer from collision risks (communicating with hardware).

Threading errors/problems are usually hard to detect and the error messages usually do not show

that the problem relates to threading, but instead can point in many confusing directions. However, some

typical errors when having violated the threading rule is that transfers suddenly do not complete correctly

or some reading of a setting shows an error or not allowed value.

5.1 Recommendation

 Important

It is strongly recommend to keep all digitizer access control in one single thread.

ADQAPI — User Guide spdevices.com Page 15 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

6 Troubleshooting

This section aims to provide some guidance when troubleshooting unexpected behavior. It is rec-

ommended that the user application is written in a robust manner, able to capture and report error

codes from failed ADQAPI function calls. In the event of a function call failure, reading the ADQAPI

trace log for additional information is a useful first step. Trace logging must be activated by calling

ADQControlUnit_EnableErrorTrace() with the trace_level argument set to 3. See details in [2].

The ADQAssist (GUI) application can also be used to enable monitoring of the digitizer interfacing

and capture logs. For more information on the ADQMonitor function, consult the ADQAssist User Guide

[4].

If the error message is difficult to interpret, the Teledyne SP Devices support can be reached via e-

mail at spd_support@teledyne.com. Please include information about your use case such as the trigger

settings as well as the specification of the signals connected, if any. Please also include a description

of the behavior and how it differs from the behavior expected. Make sure to include a trace log file from

a run where the error appears. Also always include your digitizer’s serial number when reporting a new

ticket.

 Note

Activating trace logs will consume host system resources for writing the log to disk during execution.

To achieve maximum performance in an application, trace logging should be turned off or set to only

produce error messages, not informational and warning types of messages.

ADQAPI — User Guide spdevices.com Page 16 of 32

mailto:spd_support@teledyne.com?body=<Please attach a trace log file>
https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7 Code Examples

7.1 Overview

Every example does not support all devices and programming languages. The main example code

for ADQ14/ADQ12/ADQ7/ADQ8/SDR14TX/ADQ214/ADQ1600 (note, not for the ADQ3 series) is called

ADQAPI_example and is written in C. It features examples of most operational modes but thus also con-

tains a lot of code that is not relevant for the approach the user has chosen. A sutiable basic starting point

for those products can instead be the ADQAPI_simple_example where a very simple route to acquire a

triggered record is implemented. The ADQ3 series comes with its own set of example code, separate

from other digitizers, and the data_readout example is a good starting point (for more information, consult

the ADQ3 Series Manual [?]).

 Important

All references to the termwaveform averaging, hardware supported averaging, are related to the V5/V6

family of products (ADQ412, SDR14, ADQ1600, ADQ114, ADQ214). In the products ADQ14, ADQ12,

ADQ7 the hardware supported averaging is handled by the firmware option FWATD (advanced time-

domain). The examples are not interchangeable.

Figure 5: The code examples can be found in the start menu (on Windows).

 Important

When building the code examples, make sure you are building for the correct target platform - otherwise

the API will throw an error and not find any devices. If you intend to run the application on a 64-bit

OS you must select x64 as target and if you intend to run it on a 32-bit OS you must select Win32 as

target.

ADQAPI — User Guide spdevices.com Page 17 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7.2 Definitions

Table 2 lists the definitions used throughout Section 7.

Table 2: A list of definitions for code example reference section.

Item Description

Interface language The language used in the example (for instance

C/C++/Python/MATLAB/etc.).

Complexity level Indicates the level of complexity of the example: basic, medium

or high. The high level requires more competence, program-

ming experience and attention to details.

Build environment Provided environments for building. Windows typically uses

Microsoft Visual Studio projects and Linux typically uses au-

tomake files.

Valid for product(s) The digitizer products the example works for (with no modifica-

tions).

Suitable as example for The digitizer products for which the example is suitable to use

as base for a user application.

Demonstrates features A list of the API and/or product features demonstrated in the

example.

Overview An abstract of what the example demonstrates.

Helper files Pointer to any helper files, e.g for plotting, handling data etc.

7.3 C/C++ Language examples

7.3.1 data_readout.zip

Interface language

C

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ32, ADQ33, ADQ36

Suitable as example for

ADQ32, ADQ33, ADQ36

Demonstrates features

Finding devices, setting up, acquisition

ADQAPI — User Guide spdevices.com Page 18 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Overview

Sets up the digitizer in a state controlled by compiler definitions, acquires a record and outputs

the record samples to a file. For more information, consult the ADQ3 Series Manual [?] and the

README supplied in the example archive.

7.3.2 data_transfer_gpu_amd.zip

Interface language

C

Complexity level

Advanced

Build environment

Windows

Valid for product(s)

ADQ32, ADQ33, ADQ36

Suitable as example for

ADQ32, ADQ33, ADQ36

Demonstrates features

Transfer of data to GPU

Overview

This example demonstrates streaming to an AMD GPU using DirectGM. DirectGMA is only sup-

ported by professional AMD GPUs, specified as DirectGMA in datasheet. For more information,

consult the ADQ3 Series Manual [?] and the README supplied in the example archive.

7.3.3 data_transfer_gpu_nvidia_through_host.zip

Interface language

C

Complexity level

Advanced

Build environment

Windows, Linux

Valid for product(s)

ADQ32, ADQ33, ADQ36

Suitable as example for

ADQ32, ADQ33, ADQ36

ADQAPI — User Guide spdevices.com Page 19 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Demonstrates features

Transfer of data to GPU

Overview

This example demonstrates streaming to an Nvidia GPU through host buffers. The data is first

transferred to host RAM buffers and then copied to GPU buffers. The host RAM buffers are

registered by Cuda (cudaHostRegister) for accelerated memcpy to GPU. Supported by all Cuda

capable devices. For more information, consult the ADQ3 Series Manual [?] and the README

supplied in the example archive.

7.3.4 ADQAPI_simple_example

 Note

For ADQ14 and ADQ7 this example will only run with the standard FWDAQ firmware on the device.

Interface language

C

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ7, ADQ12, ADQ214, ADQ412, SDR14

Suitable as example for

ADQ14, ADQ7, ADQ12, ADQ214, ADQ412, SDR14

Demonstrates features

Finding devices, setting trigger modes, multi-record acquisition

Overview

Sets up the digitizer in a state controlled by compiler definitions, acquires a record and outputs

the record samples to a file.

Helper files

plot_simple_example.m a plot helper for MATLAB, plotting the data

from the saved file

ADQAPI — User Guide spdevices.com Page 20 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7.3.5 ADQAPI_example

 Note

For ADQ14, ADQ7 and ADQ8 this example will only run with the standard FWDAQ firmware on the

device.

Interface language

C

Complexity level

Medium

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ7, ADQ8, ADQ12, ADQ214, ADQ412, SDR14

Suitable as example for

ADQ14, ADQ7, ADQ8, ADQ12, ADQ214, ADQ412, SDR14

Demonstrates features

Lisiting devices, setting trigger modes, multi-record acquisition, triggered streaming, raw stream-

ing, continuous streaming, configuring DBS, reading temperatures

Overview

Can be used for all products and demonstrates several modes and features in different combina-

tions.

Detailed description

If used as a base for a user application, code that is not used should be removed to simplify the

process.

Helper files

plot.py a plot helper for Python

plot_data_file.m a plot helper for MATLAB

ADQ214_GetData_Plot.m a plot helper for MATLAB for ADQ214

ADQ412_GetData_Plot.m a plot helper for MATLAB for ADQ412

ADQ412_TriggeredStreaming_Plot.m a plot helper for MATLAB for ADQ412

ADQAPI — User Guide spdevices.com Page 21 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7.3.6 ADQAPI_transfer_test_example

 Note

This example will only run with the standard FWDAQ firmware on the device.

Interface language

C

Complexity level

Medium

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ12. ADQ7

Suitable as example for

ADQ14, ADQ12, ADQ7

Demonstrates features

Listing devices, internal trigger, triggered streaming

Overview

Tests the system transfer performance by running triggered streaming acquisitions with an internal

trigger generator creating the desired amount of data.

Detailed description

The application example is described in more detail in the “Application Note: System Transfer

Test” [5]. The example measures the transfer performance and can be used to test and debug

any transfer performance issues in a system.

7.3.7 ADQAPI_FWATD_example

 Note

This example will only run with a licensed FWATD firmware on the device.

Interface language

C

Complexity level

Medium

ADQAPI — User Guide spdevices.com Page 22 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Build environment

Windows, Linux

Valid for product(s)

ADQ14-FWATD, ADQ7-FWATD, ADQ12-FWATD

Suitable as example for

ADQ14-FWATD, ADQ7-FWATD, ADQ12-FWATD

Demonstrates features

Finding devices, configure DBS, acquire accumulation results, FWATD, saving data to disk.

Overview

Sets up the digitizer to generate accumulated records with the hardware accelerated FWATD

solution.

Detailed description

By default, the example uses a test pattern to verify digital data integrity. To enable the analog

input, please adjust code line implementing the call to the SetTestPattern() API. The example

also contains code for configuring a pre-processing FIR filter.

7.3.8 ADQAPI_FWPD_example

 Note

This example will only run with a licensed FWPD firmware on the device.

Interface language

C

Complexity level

Medium

Build environment

Windows, Linux

Valid for product(s)

ADQ14-FWPD, ADQ7-FWPD, ADQ12-FWPD

Suitable as example for

ADQ14-FWPD, ADQ7-FWPD, ADQ12-FWPD

Demonstrates features

Finding devices, configure DBS, acquire pulse results, FWPD, saving results to disk

ADQAPI — User Guide spdevices.com Page 23 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Overview

Sets up the digitizer to generate data-driven pulse data with the hardware accelerated FWPD

solution.

7.4 Python Language examples

Python is supported through a package called pyADQ, which is included in the installer. The examples

in the pyADQ package are sorted into directories dependent on the type of digitizer used.

Figure 6: The Python code examples structure.

In Linux packages, the pyadq package resides in the /packages/many directory.

7.4.1 adq3_series_example.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ32, ADQ33, ADQ36

Suitable as example for

ADQ32, ADQ33, ADQ36

Demonstrates features

Finding devices, setting clocking, acquisition and readout parameters, streaming

Overview

Sets up the digitizer in a state controlled by code definitions, acquires records in streaming mode.

ADQAPI — User Guide spdevices.com Page 24 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7.4.2 adq14_adq7_adq8_streaming_example.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ12, ADQ7, ADQ8

Suitable as example for

ADQ14, ADQ7, ADQ8, ADQ12

Demonstrates features

Finding devices, setting trigger modes, triggered streaming

Overview

Sets up the digitizer in a state controlled by code definitions, acquires records in triggered stream-

ing mode and outputs the header info to the console and makes a simple plot of the data.

7.4.3 adq14_adq7_adq8_multirecord_example.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ12, ADQ7, ADQ8

Suitable as example for

ADQ14, ADQ7, ADQ8, ADQ12

Demonstrates features

Finding devices, setting trigger modes, multi-record

Overview

Sets up the digitizer in a state controlled by code definitions, acquires records in multi-record mode

ADQAPI — User Guide spdevices.com Page 25 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

and outputs the header info to the console and makes a simple plot of the data.

7.4.4 adq14_adq7_adq8_streaming_oscilloscope_view.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ12, ADQ7, ADQ8

Suitable as example for

ADQ14, ADQ7, ADQ8, ADQ12

Demonstrates features

Finding devices, setting trigger modes, triggered streaming

Overview

Sets up the digitizer in a state controlled by code definitions, acquires records in triggered stream-

ing mode and provides an oscilloscope-like view of data.

7.4.5 ADQ214_example.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ214

Suitable as example for

ADQ214

Demonstrates features

Finding devices, setting trigger modes, multi-record acquisition

ADQAPI — User Guide spdevices.com Page 26 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Overview

Sets up the digitizer in a state controlled by code definitions, acquires a record and plots some

data.

7.4.6 sdr14tx_fileoutput.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

SDR14TX

Suitable as example for

SDR14TX, SDR14

Demonstrates features

Finding devices, configuring DAC data.

Overview

Sets up the generator, loads samples from a file, uploads the samples to the generator and plays

the data.

7.4.7 sdr14tx_toneoutput.py

Interface language

Python3

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

SDR14TX

Suitable as example for

SDR14TX, SDR14

ADQAPI — User Guide spdevices.com Page 27 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Demonstrates features

Finding devices, configuring DAC data.

Overview

Sets up the generator, synthesizes a sine wave through Python code, uploads the samples to the

generator and plays the data.

7.4.8 sdr14tx_Playlist_example.py

Interface language

Python3

Complexity level

Medium

Build environment

Windows, Linux

Valid for product(s)

SDR14

Suitable as example for

SDR14TX, SDR14

Demonstrates features

Finding devices, configuring DAC data, playlist mode.

Overview

Sets up the generator, synthesizes data in code, uploads the samples to the generator in playlist

mode and plays the data. Uses the analog input of the SDR14 (not available on SDR14TX) to

record data and plots the data.

Detailed description

This script showcases in Python:

• How to connect to ADQ devices in Python

• Upload of waveforms to the SDR14TX

• Using a playlist on the SDR14TX

• How to setup an acquisition of data

• How to read data by GetData() API in Python

• How to plot data in Python

ADQAPI — User Guide spdevices.com Page 28 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

7.5 MATLAB Language examples

 Important

The ADQ3 series of products, ADQ32, ADQ33 and ADQ36 do not have support for MATLAB.

7.5.1 ADQ7_ts_example_script.m

Interface language

MATLAB

Complexity level

Basic

Build environment

Windows

Valid for product(s)

ADQ7

Suitable as example for

ADQ7

Demonstrates features

Finding device, setting trigger modes, triggered streaming acquisition.

Overview

Sets up the digitizer in a state controlled by code definitions and acquires records continuosly.

7.5.2 ADQ14_ts_example_script.m

Interface language

MATLAB

Complexity level

Basic

Build environment

Windows

Valid for product(s)

ADQ14

Suitable as example for

ADQ14

ADQAPI — User Guide spdevices.com Page 29 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Demonstrates features

Finding device, setting trigger modes, triggered streaming acquisition.

Overview

Sets up the digitizer in a state controlled by code definitions and acquires records continuosly.

7.5.3 ADQ14_example_script.m

Interface language

MATLAB

Complexity level

Basic

Build environment

Windows

Valid for product(s)

ADQ14

Suitable as example for

ADQ14

Demonstrates features

Finding device, setting trigger modes, multi-record acquisition.

Overview

Sets up the digitizer in a state controlled by code definitions and acquires records as configured.

7.5.4 SDR14_AWG_Playlist_example.m

Interface language

MATLAB

Complexity level

Basic

Build environment

Windows

Valid for product(s)

SDR14TX

Suitable as example for

SDR14TX

ADQAPI — User Guide spdevices.com Page 30 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Demonstrates features

Finding device, defining waveforms and playlist, uploading and play.

Overview

Sets up the waveform generator with waveforms and a playlist of sequencing and starts the se-

quence.

7.6 C# Language examples

7.6.1 ADQAPI_CSharp_example

Interface language

C# (.NET)

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ7, ADQ12, ADQ214, ADQ412, SDR14

Suitable as example for

ADQ14, ADQ7, ADQ12, ADQ214, ADQ412, SDR14

Demonstrates features

Finding devices, setting trigger modes, multi-record acquisition.

Overview

Sets up the digitizer in a state controlled by compiler definitions, acquires a record and outputs

the record samples to a file.

7.7 VisualBasic Language examples

 Warning

For applications where performance is important (in terms of transfer and processing speed of acquired

data) it is strongly recommend to avoid Visual Basic entirely, due to the limitations it entails.

7.7.1 ADQAPI_VisualBasic_Example

Interface language

VB (.NET)

ADQAPI — User Guide spdevices.com Page 31 of 32

https://www.spdevices.com

Classification Revision

Public 65395

Document ID Print date

08-0214 2022-05-04

Complexity level

Basic

Build environment

Windows, Linux

Valid for product(s)

ADQ14, ADQ7, ADQ12, ADQ214, ADQ412, SDR14

Suitable as example for

ADQ14, ADQ7, ADQ12, ADQ214, ADQ412, SDR14

Demonstrates features

Finding devices, setting trigger modes, multi-record acquisition.

Overview

Sets up the digitizer in a state controlled by code definitions, acquires a record and outputs the

record samples to a file.

References

[1] Teledyne Signal Processing Devices Sweden AB, 14-1367 ADQAPI and dotNet User Guide. Techni-

cal Manual.

[2] Teledyne Signal Processing Devices Sweden AB, 14-1351 ADQAPI Reference Guide. Technical

Manual.

[3] Teledyne Signal Processing Devices Sweden AB, 20-2465 ADQGen3 Streaming User Guide. Tech-

nical Manual.

[4] Teledyne Signal Processing Devices SwedenAB, 20-2521ADQAssist User Guide. Technical Manual.

[5] Teledyne Signal Processing Devices Sweden AB, 19-2245 Application Note: System transfer test.

Technical Manual.

ADQAPI — User Guide spdevices.com Page 32 of 32

https://www.spdevices.com

Worldwide Sales and Technical Support

spdevices.com

Teledyne SP Devices Corporate Headquarters

Teknikringen 8D

SE-583 30 Linköping

Sweden

Phone: +46 (0)13 645 0600

Fax: +46 (0)13 991 3044

Email: spd_info@teledyne.com

Copyright © 2022 Teledyne Signal Processing Devices Sweden AB

All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.

https://spdevices.com
mailto:spd_info@teledyne.com

	Introduction
	Definitions and Abbreviations

	Overview
	Running on Windows
	Running on Linux

	API
	ADQAPI Objects
	ADQAPI function calls
	C API
	C++ API
	Matlab
	.NET
	Python
	Identifying and setting up a device for operation
	Using FindDevices()
	Using ListDevices() (advanced)

	Application Programming Flowchart
	Acquisition mode: Multi-record
	Acquisition mode: Triggered streaming
	Acquisition mode: Streaming

	Multithreading
	Recommendation

	Troubleshooting
	Code Examples
	Overview
	Definitions
	C/C++ Language examples
	data_readout.zip
	data_transfer_gpu_amd.zip
	data_transfer_gpu_nvidia_through_host.zip
	ADQAPI_simple_example
	ADQAPI_example
	ADQAPI_transfer_test_example
	ADQAPI_FWATD_example
	ADQAPI_FWPD_example

	Python Language examples
	adq3_series_example.py
	adq14_adq7_adq8_streaming_example.py
	adq14_adq7_adq8_multirecord_example.py
	adq14_adq7_adq8_streaming_oscilloscope_view.py
	ADQ214_example.py
	sdr14tx_fileoutput.py
	sdr14tx_toneoutput.py
	sdr14tx_Playlist_example.py

	MATLAB Language examples
	ADQ7_ts_example_script.m
	ADQ14_ts_example_script.m
	ADQ14_example_script.m
	SDR14_AWG_Playlist_example.m

	C# Language examples
	ADQAPI_CSharp_example

	VisualBasic Language examples
	ADQAPI_VisualBasic_Example

