# 2021 Data Reconstruction & Calibration

Norman Graf (SLAC) Software Meeting January 11, 2022

## Ecalibration: Process

- Will use FEEs to iteratively derive the crystal-bycrystal corrections in the data
- Will use MC single particles (e<sup>+</sup>, e<sup>-</sup>, γ) to derive the position and energy-dependent "sampling fraction" corrections, i.e. the energy lost in the interstitial regions or off the edges of the calorimeter
- Process and procedures are in place. Andrea
  Celentano is leading this effort, as he did for the 2019 data.

## ECalibration: Data and MC

- Will use the dedicated FEE run 14168 and skims of the FEE triggers throughout the run
- See Nathan's presentation for a status report on the event skimming.
- MC single particle events (e<sup>+</sup>, e<sup>-</sup>, γ) have been generated at a range of energies and positions which uniformly cover the face of the Ecal
- Andrea will give a presentation at tomorrow's general HPS meeting.

## ECalibration: Validation

- FEE samples at both 1.92 and 3.7 GeV will be used by requiring single cluster energies to equal the beam energies.
- WAB samples will be used to test the "sampling fraction" corrections for both electrons and positrons at lower cluster energies by requiring that the energy sum of electron + photon clusters equals the beam energies
- Three-prong tridents will be used to test the "sampling fraction" corrections for positrons by requiring the energy sum of the two electrons and one positron to equal the beam energies.

## SVT Hit Finding/Fitting

- Alic and Cameron are working to calibrate the fitting of the SVT APV25 readout waveforms
  - Expect better resolution on hit times
  - Expect more good hits and ∴ more tracks to be found.
- Will then study the SVT strip clustering to see if improvements can be made
- See Alic's presentation for details.

## SVT Alignment / Calibration

- PF has performed an initial alignment of the SVT top layers using FEEs
- Need to address bottom SVT
- Will then need to extend alignment to positron side and to lower momenta
  - Will use E/p to constrain momentum for tracks associated with ECal clusters once the ECal has been calibrated.
- Will use field-off data from two z locations
- Will use field-on data using both top and bottom SVT positioning wires.
- A dedicated SVT alignment meeting was held at the end of last year. Documentation available at <u>https://confluence.slac.stanford.edu/pages/viewpage</u> .action?pageId=326526876

## SVT Calibration : Validation

- Will derive / validate SVT alignment / calibration using FEEs at 3.74 and 1.92 GeV
- E/p using calibrated ECal clusters
- WABs:  $e^{-}$  momentum +  $\gamma$  energy = beam energy
- Three-prong tridents: momentum sum = beam momentum and direction
- Møllers:
  - $\hfill\square$  Use  $\theta$ -p relations to validate calibration and alignment
  - Use invariant mass and resolution to validate calibration and alignment.
- Validate global alignment with SVT wire data

## Action Items

- Skim the FEE, Møller, di-muon and random triggers
  - See Nathan's presentation for a status report on this
- Derive the Ecal calibrations
  - Crystal-by-crystal corrections from the FEE data
    - available at 1.92 and 3.74 GeV
  - "Sampling Fraction" corrections from MC
    - MC single-particle e<sup>-</sup>, e<sup>+</sup>, γ samples at various energies are available
  - Run-dependent corrections from the data
  - See Andrea's presentation for status and plans.
- Improve the SVT hit finding
  - Calibrate the fitting of the APV25 waveforms
  - Analyze the strip clustering
  - See Alic's presentation for details.
- Align the SVT
  - Buge amount of effort from PF has gone into developing the tools and infrastructure to support this effort
  - Huger amount of effort is needed to actually align and calibrate the tracker
  - Numerous data samples are available to study/constrain this effort
    - FEEs, WABs, three-prong Tridents provide momentum-constrained tracks for sensor alignment
    - Møllers at both 1.92 and 3.74 GeV provide strong momentum-angle constraints for global alignment
    - Tracks from two different z locations (SVT positioning wires on top and bottom)
    - Straight tracks at two different z locations (2H02 Harp and collimator wires)
  - A dedicated SVT alignment meeting was held at the end of last year. Documentation available at <a href="https://confluence.slac.stanford.edu/pages/viewpage.action?pageld=326526876">https://confluence.slac.stanford.edu/pages/viewpage.action?pageld=326526876</a>
- Please get involved!