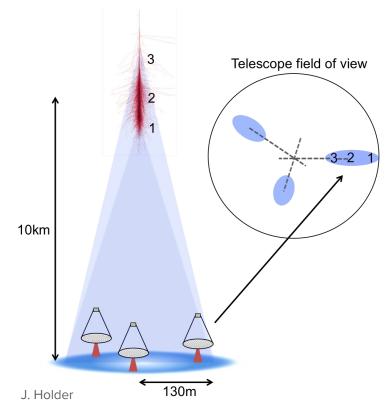
# Deep Learning for Event Classification with CTA

Ari Brill, Columbia University Fermi Summer School June 4, 2018




#### Cherenkov Telescope Array (CTA)

The next-generation Imaging Air Cherenkov Telescope (IACT) array

Small, Medium, and Large Size Telescopes CTA North: La Palma, Canary Islands, Spain CTA South: Paranal, Atacama De<u>sert, Chile</u>

Operations planned to start in 2020s

#### **IACT Event Reconstruction**



Model each shower image as an ellipse and parametrize by its moments

Combine parameters from all triggered telescopes to reconstruct the arrival direction and energy of the originating v gamma ray

Centre of field of view

Ψ

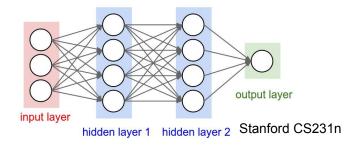
ENGT

Inagentroid

#### 100 GeV photon

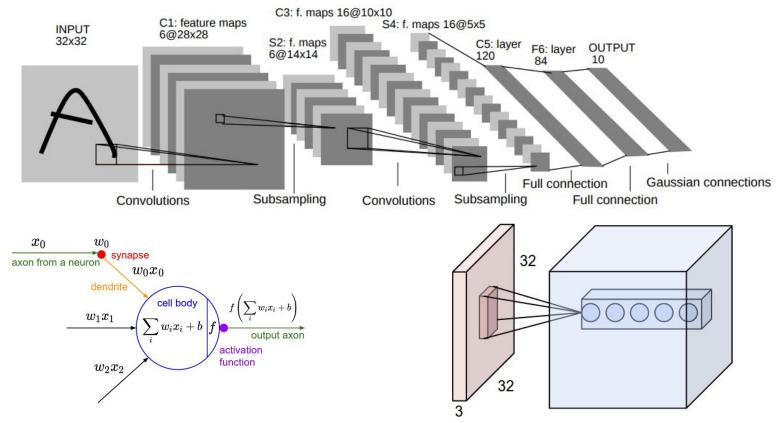
100 GeV proton

Cosmic-ray showers are a massive background! Reject them using the shower shape camera (FOV) γ-ray wid cosmic ray


M. Santander

### Deep Learning

Convolutional Neural Network (CNN): machine learning technique that can directly classify camera images, with no explicit intermediate parameterization


Needs lots of training data and parallel processing using graphics cards (~10x speedup)

CNNs have been used to classify gamma-ray and muon images (HESS, VERITAS) and are currently being studied by many groups in CTA





#### **Convolutional Neural Networks**



#### Schwarzschild-Couder Telescope (SCT)

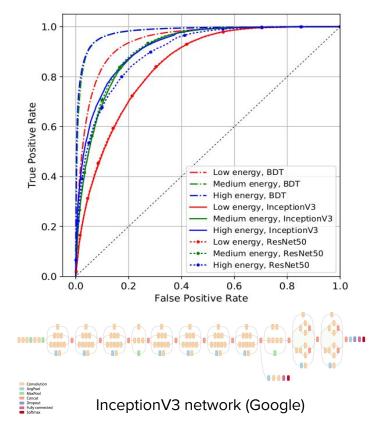
Prototype under construction at VERITAS site in Arizona

Dual-mirror optics and high-resolution camera improve sensitivity, angular resolution, and field of view compared to standard medium size telescopes

SCT images have high resolution and square pixels, making them well suited for analysis with neural networks



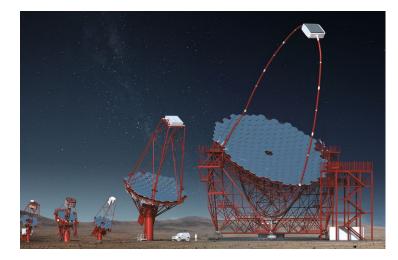
#### Proof of Concept: SCT Gamma/Hadron Classification

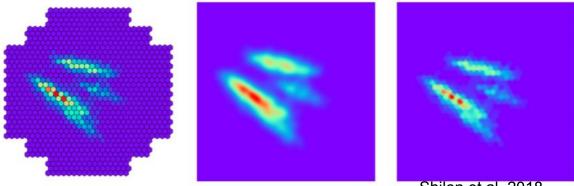

Trained on single telescope SCT images of diffuse gammas and protons

Used slightly modified well-known CNN models, InceptionV3 (Google) and ResNet50 (Microsoft)

Neural networks work, but need stereo reconstruction to match existing analysis methods

Nieto, Brill, Kim, Humensky: arXiv:1709.05889


| Model        | Low E. | Med. E. | High E. |
|--------------|--------|---------|---------|
| ResNet50     | 81.1%  | 90.1%   | 91.2%   |
| Inception V3 | 81.4%  | 90.1%   | 91.6%   |




### IACT Deep Learning Challenges

**Combine images from a telescope array** containing many different telescopes which may or may not have triggered → best results so far achieved with recurrent neural networks, but still preliminary

Process **hexagonally spaced pixels** into a square matrix → many methods under study, no consensus yet





Get lots of **labeled training data**:

- Reprocess MC simulations → ImageExtractor
- Understand effect of subtle differences between sims and data → not there yet

Shilon et al. 2018

#### Training Pipeline: ImageExtractor and CTALearn

ctapipe pytables myfile.h5 [

image-extractor

| vode Dataset Setti     | nas Win    | dow Help   |                   |               |           |                  | X WTables 2.1      |                |                   |                        |                 |                                          |                |
|------------------------|------------|------------|-------------------|---------------|-----------|------------------|--------------------|----------------|-------------------|------------------------|-----------------|------------------------------------------|----------------|
| - ° 🖌 🔀                | 9 A        | 0.0.3      | 4 T 7             | N 10          |           |                  |                    |                |                   |                        |                 |                                          |                |
| f databases            | ] 📼        |            |                   |               |           |                  | Event_Info Tab     | le of Events   |                   |                        |                 |                                          | -              |
| gamma_20deg_0deg_s     |            | alt        | az                | core_x        | core_y    |                  | be h_first_int     | mc_energy      | particle_id       | run_number             | LST_indices     | MSTF_indices                             | MSTN_indices   |
| Telescope_Info<br>MSTS | 49         | 1.1454557. | 0.0866552         | -96.519554    | 565.0084  | 3 420412L        | 22179.482          | 0.7493894      | 0                 | 103L                   | [0,0,0,0]       | [ 0, 0, 0,                               | [ 0, 0, 0,     |
| MSTF<br>SSTC           | 50         | 1.2352312. | 6.0728411         | -832.09399    | 783.2206  | 450400L          | 22416.755          | 0.2976707      | 0                 | 103L                   | [0,0,0,0]       | [0,0,0,0,0,0                             | [0,0,0,0,0,0   |
| LST                    | 51         | 1.1855627. | 0.1470879         | 254.10853     | 386.0255  | I 451517L        | 11787.787          | 0.4696152      | 0                 | 103L                   | [0,0,0,0]       | [ 0, 0, 0,                               | [ 0, 0, 0,     |
| Event_info<br>MSTN     | 52         | 1.1855627. | 0.1470879         | 119.63536     | -261.8920 | 2 451518L        | 11787.787          | 0.4696152      | 0                 | 103L                   | [0,0,0,0]       | [ 0, 0, 0,                               | [ 0, 0, 0,     |
| SST1<br>Array_Info     | 53         | 1.1938250. | 0.0782693         | -275.41110    | -166.2418 | 8 503113L        | 53613.238          | 0.1761593      | 0                 | 103L                   | [0,28,0,0]      | [ 0, 0, 0,                               | [ 0, 0, 0, ]   |
| SSTA<br>Query results  | 54         | 1.2941939. | 6.2468996         | 788.06329     | 598.1732  | L 518403L        | 19628.548          | 1.3321757      | 0                 | 103L                   | [0,0,0,0]       | [0,0,0,0,0,0                             | [0,0,0,0,0,0 ] |
| Julery results         | 55         | 1.2941939. | 6.2468996         | i 299.0078125 | -64.88713 | 8 518412L        | 19628.548          | 1.3321757      | 0                 | 103L                   | [29,30,31,32]   | [112,113,1                               | [129,130,1     |
|                        | 56         | 1.2941939. | 6.2468996         | 383.88629     | -852.4410 | 4 518415L        | 19628.548          | 1.3321757      | 0                 | 103L                   | [0,0,0,0]       | [0,0,0,0,0,0                             | [0,0,0,0,0,0 ] |
|                        | <u>e</u>   |            |                   |               |           |                  |                    |                |                   | 1                      |                 |                                          |                |
|                        |            |            | Info Table of     |               |           |                  | Array_Info Ta      |                |                   |                        | -0×)            |                                          |                |
|                        | nun<br>204 |            | tel_type<br>SSTC' | pixel_pos     | 1 [ 0.    | rray_dire tel_id | tel_type<br>'SSTC' | tel_x<br>205.5 | tel_y<br>158.8999 | tel_z<br>9 5.0         | -               |                                          |                |
|                        | 1 185      |            |                   |               |           |                  | 'SSTC'             | 205.5          | -158.8999         |                        | _               |                                          |                |
|                        | -          |            |                   | [[ 0. ,-0     | 2 [ 0.    | , 1 151          |                    |                |                   |                        | _               |                                          |                |
|                        | 3 129      |            |                   | [[ 0.483700   | 3 [ 0.    | , 1 152          | 'SSTC'             | -205.5         | 158.8999          |                        | _               |                                          |                |
|                        | 4 185      |            |                   | [[ 0. ,-0     | 4 [ 0.    | , 1 153          | 'SSTC'             | -205.5         | -158.8999         |                        | _               |                                          |                |
|                        | 5 236      |            | SSTA'             | [[-0.083873   | 5 [ 0.    | , 1 154          | 'SSTC'             | 164.8230       |                   |                        |                 |                                          |                |
|                        | 6 176      |            |                   | [[-0.028868   | 6[0.      | , 1 155          | 'SSTC'             | 164.8230       |                   |                        |                 |                                          |                |
|                        | 7 113      | 28L '      | MSTS <sup>1</sup> | [[-0.13141    | 7 [ 0.    | , 1 156          | 'SSTC'             | -164.8230      |                   |                        |                 |                                          |                |
|                        | _          |            |                   |               | -110      | 1 157            | of MSTS image      | -164 823/      |                   | 7 5.0<br>A Table of SS |                 | (11) (1) (1) (1) (1) (1) (1) (1) (1) (1) |                |
|                        | - I.       |            | le of LST im      | ngest         |           |                  | image_charge in    |                |                   |                        | e charge imag   |                                          |                |
|                        | 1          |            |                   | [ 0., 0., 0., |           |                  | [0., 0., 0., [1    |                | 1-1               |                        | )., 0., [ 0., 0 |                                          |                |
|                        | 2          |            | -1.022131         | [ 29., 13., 2 |           |                  | [ 0.530131 [ :     | 6., 17., 3     | 2 3               | [ 3.42                 | 27621 [ 0., 0   | . 0.,                                    |                |
|                        | 3          |            | [-0.068984        | [ 14., 21., 2 |           |                  | -0.390928 [        | 9., 12., 4     | 3 3               | [ 3.10                 | 01689 [ 0., 0   | . 0                                      |                |
|                        | - 4        |            | -2.290415         | [ 19., 12., 2 |           |                  | [ 0.311424 [ ]     | 1., 62., 6     | 4 4               | [ 3.20                 | 07052 [ 0., 0   | . 0.,                                    |                |
|                        |            |            | 13.187152         |               |           |                  | [-0.596221 [ ]     | 0 41 4         | - 4               | [2.7]                  | 21935 [ 0 0     | 0                                        |                |
|                        | 6          |            |                   | [ 11., 11., 1 |           |                  |                    | 6., 43., 1     | 6 5               |                        | 8618 [ 0., 0    |                                          |                |
|                        | - 7        |            | [-0,438498        |               |           |                  | [-0.474259 []      |                |                   |                        |                 | . 0.,                                    |                |
|                        | - 7        |            |                   | [ 1., 0., 5   |           |                  | [ 0.714945 [       |                | /                 |                        | 03550 [ 0., 0   |                                          |                |
|                        |            |            | 1.306642          |               | 8         |                  | 1-0.368896 [ ]     |                | 8 6               |                        | 54033 [ 0., 0   |                                          |                |
|                        | 9          |            |                   |               | 9         |                  |                    |                | 9 6               |                        |                 |                                          |                |
|                        | 10         |            |                   | [ 23., 23.,   | 10        |                  | [-0.208501 [ !     |                | 10 7              |                        | 35806 [ 0., 0   |                                          |                |
|                        | 11         |            | I-1.744614        | [ 8., 7., 11  | 11        | 10               | [ 0.288177 [ ]     | u., 24., 1     | 17                | 121                    | 10/35 (0 0      |                                          |                |

myfile.simtel.gz



CTALearn

https://github.com/cta-observatory/image-extractor

Daniel Nieto (UCM); Bryan Kim, Ari Brill (Columbia)

### CTALearn

High-level Python library for doing deep learning with IACT image data

Includes modules for loading and manipulating ImageExtractor HDF5 data and for running machine learning models with TensorFlow

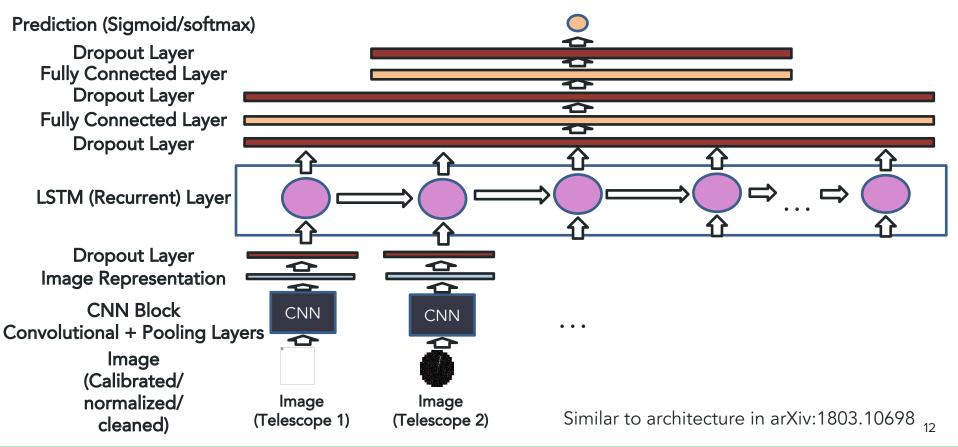
Configuration-file-driven workflow drives reproducible training and prediction

Search or jump to...
?
Pull requests
Issues
Marketplace
Explore

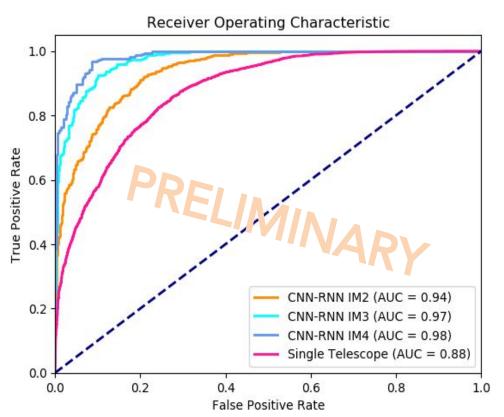
 + ~ 😭 ~

bryankim96 / ctalearn
Image: Code of the pull requests in the projects of the pull requests in the projects of the pull requests in the projects of the pull requests in the project of the pull requests in the project of the pull request of the p

Exploratory work on applying deep convolutional neural networks to CTA event classification


| 394 commits                   | ₿ <b>º 3</b> branches                                       | 🛇 3 releases    |              | <u>\$</u> 2 | contributors           |
|-------------------------------|-------------------------------------------------------------|-----------------|--------------|-------------|------------------------|
| Branch: master - New pull red | quest                                                       | Create new file | Upload files | Find file   | Clone or download 🔻    |
| Remove predict.py             | (                                                           |                 |              | Latest com  | mit 9842660 6 days ago |
| 🖿 ctalearn                    | Remove predict.py                                           |                 |              |             | 6 days ago             |
| in misc                       | Predict with or without true labels                         |                 |              |             | 6 days ago             |
| models                        | Prepare for automated training                              |                 |              |             | a month ago            |
| tests                         | Fixed unnecessary arguments to test_split_indices_lists     |                 |              |             | 4 months ago           |
| .gitignore                    | Removed .txt from .gitignore                                |                 |              |             | 7 months ago           |
| Iandscape.yml                 | Added .landscape.yml file                                   |                 |              |             | 4 months ago           |
| .travis.yml                   | Changed python version from 3.5 to 3.6.                     |                 |              |             | 3 months ago           |
| README.md                     | Update README.md                                            |                 |              |             | 2 months ago           |
| requirements.txt              | Update requirements for OSX support                         |                 |              |             | 2 months ago           |
| setup.cfg                     | Added .travis.yml, requirements file, and setup.cfg file. M | oved            |              |             | 7 months ago           |
| setup.py                      | Remove model files from package                             |                 |              |             | 2 months ago           |

#### Current development version: v0.1.2


Primary developers (join us!): Ari Brill, Bryan Kim, Qi Feng (Columbia) Daniel Nieto (UCM)

https://github.com/bryankim96/ctalearn

#### CNN-RNN



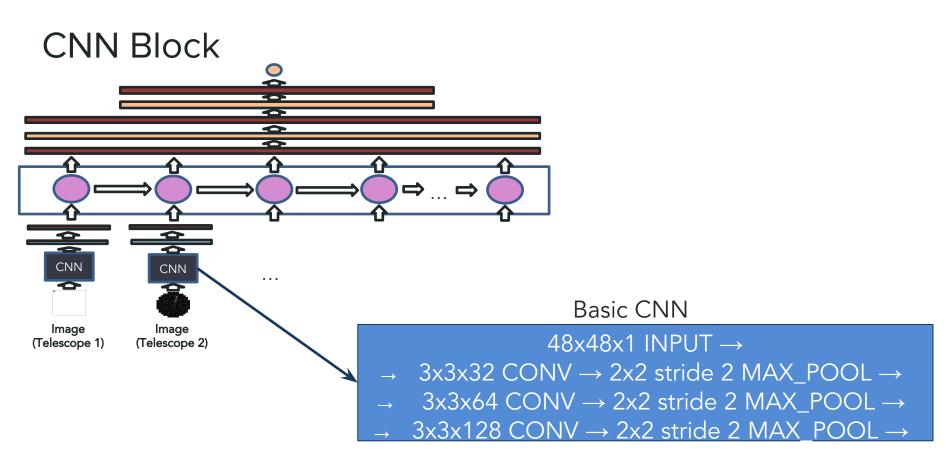
#### **CNN-RNN**

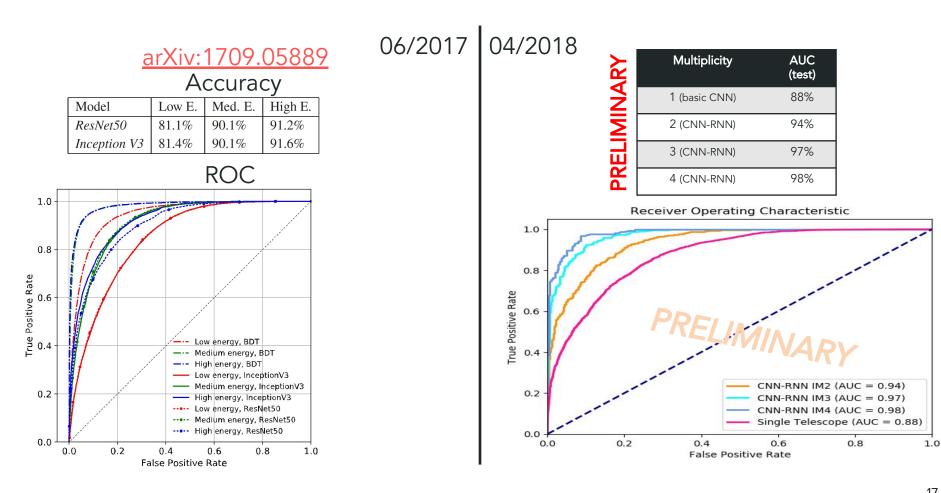


- Trained on 200k events each of protons and diffuse gammas from ImageExtractor "ProtoML" dataset
- No quality cuts, no pre-selection of data (except for multiplicity)
- SCT images only
- Preliminary results look promising albeit no hyperparameter optimization

| PRELIMINARY   |               |  |  |  |
|---------------|---------------|--|--|--|
| Multiplicity  | AUC<br>(test) |  |  |  |
| 1 (basic CNN) | 88%           |  |  |  |
| 2 (CNN-RNN)   | 94%           |  |  |  |
| 3 (CNN-RNN)   | 97%           |  |  |  |
| 4 (CNN-RNN)   | 98%           |  |  |  |

### Looking Ahead


Neural networks work well for IACT data but have many challenges remaining


CNN-RNN architecture gives promising preliminary results on gamma/hadron classification with many improvements possible: hyperparameter optimization, inclusion of more telescope types, application to energy/direction reconstruction

CTALearn v0.2 release expected in July:

- Configure user-provided machine learning models
- Load and train with data from any CTA telescope/camera (+ VERITAS)
- Major code upgrades aimed at future use with CTA low-level analysis (ctapipe)
- Code available at github.com/bryankim96/ctalearn

## Backup





####