

College of Science

TYLER PARSOTAN MONTE CARLO RADIATION TRANSFER IN LONG GRBS

OUTLINE

- Introduction
 - Properties of GRBs, Radiation Transfer Models
- Motivation
- Methods
- Results
 - Comparisons to Observations
 - Liso-Epk Tracking

GRBS ARE COLLIMATED, RELATIVISTIC OUTFLOWS

 How to account for the extremely high observed energies

ApJ 523:L121-L124

BUT THEY CAN BE FIT WITH A "THERMAL" SPECTRUM

BAND FUNCTION

$$N(E) = A \cdot \left(\frac{E}{100 \text{ keV}}\right)^{\alpha} \cdot \exp\left(-E/E_0\right),$$
$$N(E) = A \cdot \left[\frac{(\alpha - \beta) \cdot E_0}{100 \text{ keV}}\right]^{\alpha - \beta} \cdot \exp\left(\beta - \alpha\right) \cdot \left(\frac{E}{100 \text{ keV}}\right)^{\beta}$$

$$f_{\text{COMP}}(E) = A \left(\frac{E}{100 \text{ keV}}\right)^{\alpha} \exp\left[-\frac{(\alpha+2)E}{E_{\text{p}}}\right]$$

$$E_{pk} = E_o(2+\alpha)$$

GRB RADIATION MODELS PHOTOSPHERIC MODEL

Adapted from: S. Guiriec et al. 2016 The Astrophysical Journal Letters 831 L8

WE CAN MODEL THE STRUCTURE OF JETS BUT WE CAN'T EASILY DETERMINE THE RADIATION SIGNATURE

WE CAN MODEL THE STRUCTURE OF JETS BUT WE CAN'T EASILY DETERMINE THE RADIATION SIGNATURE

WE CAN CONDUCT SELF CONSISTENT RADIATION TRANSFER CALCULATIONS ON SIMPLE OUTFLOWS

METHODS

MONTE CARLO SCATTERING OF PHOTONS IN THE JET

METHODS

MONTE CARLO SCATTERING OF PHOTONS IN THE JET

TRACKING THE TEMPERATURES SHOW HOW THE PHOTONS AND MATTER EVOLVE

TRACKING THE TEMPERATURES SHOW HOW THE PHOTONS AND MATTER EVOLVE

THE "CONSTANT" SIMULATION SET

Simulation Name	Progenitor	Jet Luminosity (erg/s)	Γ_{∞} a
16OI	16OI	$5.33 imes 10^{50}$	400
35OB	350B	$5.33 imes 10^{50}$	400
$16\mathrm{TI}$	$16 \mathrm{TI}$	$5.33 imes 10^{50}$	400
16 TI.e150	$16 \mathrm{TI}$	1×10^{50}	400
16 TI.e 150.g 100	$16 \mathrm{TI}$	1×10^{50}	100

^aAsymptotic Lorentz factor

THE "VARIABLE" SIMULATION SET

THE "VARIABLE" SIMULATION SET

17

THE "VARIABLE" SIMULATION SET

WE CAN CONSTRUCT OUR OWN OBSERVATIONS AND DIG DEEPER

- Collect photons at a given viewing angle, θ_v
- Break up the photons into those that arrived during a given time interval
- Produce spectra and light curves

Best Fit: Band Function

Best Fit: COMP Function

THE SIMULATION SET IS CONSISTENT WITH THE GOLENETSKII RELATION

THE SIMULATION SET IS NOT CONSISTENT WITH THE AMATI RELATION

THE SIMULATION SET IS RELATIVELY CONSISTENT WITH THE YONETOKU RELATION

COMPARING "CONSTANT" SIMULATION SET LIGHT CURVES TO OBSERVED LIGHT CURVES

Yu et. al. A&A, 588:A135, 2016.

SUMMARY

- Photons gradually decouple from the jet
- We are in agreement with the Yonetoku and Golenetskii relations but not the Amati relation
- The Band alpha parameters can be reproduced
- We can recreate observational aspects not reproduced before

IMPROVEMENTS WILL BE MADE TO MCRAT

- Larger domain hydrodynamical simulations of Gamma Ray Bursts
- Need more low energy photons
 - Add a subdominant radiation mechanism

Monte Carlo Radiation Transfer

Use the Klein Nishina Cross Section with polarization

PARSOTAN & LAZZATI 2018 APJ 853 8

ARXIV: 1805.10327

RESEARCHGATE.NET/PROFILE/TYLER_PARSOTAN

SCIENCE.OREGONSTATE.EDU/~PARSOTAT/

GITHUB.COM/LAZZATI-ASTRO/MCRAT

THANK YOU

QUESTIONS?

New Results

COMPTON SCATTERING CAN RECREATE THE BAND β parameter

COMPTON SCATTERING CAN RECREATE THE PEAK ENERGIES

COMPTON SCATTERING CAN RECREATE THE BAND LOW ENERGY PARAMETERS

INTRODUCTION

Best Fit: Band Function

Best Fit: COMP Function

Yu et. al. A&A, 588:A135, 2016.

COMPTON SCATTERING CAN RECREATE THE BAND β parameter

COMPTON SCATTERING CAN RECREATE THE PEAK ENERGIES

COMPTON SCATTERING CANNOT RECREATE THE BAND LOW ENERGY PARAMETERS

THE PHOTOSPHERE IS A DYNAMIC SURFACE

