# Low-Frequency Observations as a Proxy for Jet Power in RL AGN and the Connection of Jet Power and Jet Speed

Mary Keenan University of Maryland, Baltimore County

Advisor: Dr. Eileen Meyer

Fermi Summer School 2018

# ACTIVE GALACTIC NUCLEI (AGN)

- Active Galactic Nuclei (AGN) are powered by the accretion of matter onto a supermassive black hole in the center of a galaxy.
  - Very luminous
  - Broadband spectrum: emit from radio all the way to gamma rays.



## **RADIO LOUD AGN**

#### Lobes



Radio image of Cygnus A

#### About 10% of AGN have relativistic jets

- Fully Ionized, relativistic plasma with bulk velocities close to c (Lorentz factors ~ 2-50)
- Extend from the core, can terminate in hotspots
- Slowed plasma accumulates into the lobe

#### **RADIO GALAXIES**





FR I (3C296)

FR II (3C47)

- In 1974, Fanaroff & Riley noticed difference in morphology, which resulted a distinction between FR I and FR II radio galaxies
- Ghisellini and Celloti (2001) found that this corresponded to a difference in the radio-optical plane

### BLAZARS

- Blazars are radio galaxies with the jet oriented along the line of sight
- Two Types:
  - BL Lacertae Objects (BL Lacs)
  - Flat Spectrum Radio Quasars (FSRQ)





### SPECTRAL ENERGY DISTRIBUTION (SED)



# SYNCHROTRON PEAK

• Highly Doppler boosted emission from the core



uoregon.edu





When the plasma is relativistic, the Apparent Luminosity/Frequency is dependent on  $\theta$ ,  $\Gamma$ 

 $\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)}$ 

 $L_{intrinsic} = L_{observed} \, \delta^n$ 





Can be enhanced by orders of magnitude! (in both Luminosity and Frequency)

# **ISOTROPIC LOBE EMISSION**

- Also synchrotron emission
- Emitted by the slowed plasma in the lobes
- Not subject to Doppler boosting
- Built up over the lifetime of the source





Radio Image of 3C 227

# LOW-FREQUENCY OBSERVATIONS AS A PROXY FOR JET POWER





MS0735.6 (McNamara et al. 2009) shows the x-ray emission in blue and radio emission in red. Jets inflate cavities in hot X-ray emitting gas.

Cavagnolo, et al., 2010 estimated the work required to inflate the cavities of FR Is, and found that it is correlated with the low frequency emission.

# **RADIO SPECTRAL DECOMPOSITION**



- The spectra can be decomposed by looking for a spectral break in  $\nu v s L_{\nu}$ 
  - Lobe emission is falling
  - Core emission is flat
- Model components with individual power law fits
- Fits can then be extrapolated to

### **VLBI PROPER MOTIONS**



- VLBI Images have a high enough resolution to resolve knots on the parsec scale.
- Proper Motions are the apparent angular motion of features within the jet





### JET POWER – JET SPEED (PRELIMINARY) RESULTS

- Question: Can the data be explained by a one-to-one relation between **Γ** and L<sub>ext</sub>? Or does L<sub>kin</sub> set an upper limit on **Γ**?
- Limit on Γ is due to the jet being oriented at the critical angle



### POPULATION MODELING

- Drew three parameters to classify each source:
  - Redshift: drawn from shell of constant co-moving volume
  - Extended Luminosity drawn from the model in Willott et al.
     2001
  - Angle: selected randomly
- Need estimates for the Core Luminosity and the Lorentz factor  $\rho(L,z) = \rho_1 + \rho_h$

where  

$$\rho_{l} = \rho_{l\bigcirc} \left(\frac{L}{L_{l*}}\right)^{-\alpha_{l}} \exp\left(\frac{-L}{L_{l*}}\right) (1+z)^{k_{l}} \quad \text{for } z < z_{l\bigcirc},$$

$$\rho_{l} = \rho_{l\bigcirc} \left(\frac{L}{L_{l*}}\right)^{-\alpha_{l}} \exp\left(\frac{-L}{L_{l*}}\right) (1+z_{l\bigcirc})^{k_{l}} \quad \text{for } z \ge z_{l\bigcirc},$$

$$\rho_{h} = \rho_{h\bigcirc} \left(\frac{L}{L_{h*}}\right)^{-\alpha_{h}} \exp\left(\frac{-L_{h*}}{L}\right) f_{h}(z).$$

$$f_{h}(z) = \exp\left[-\frac{1}{2}\left(\frac{z-z_{h\bigcirc}}{z_{h2}}\right)^{2}\right]$$



15

#### CORE LUMINOSITY ESTIMATION

- Assumed that the  $L_{core,intrinsic}$  is linearly related to the  $L_{kinetic}$ 
  - Binned the sample by *L<sub>kinetic</sub>*
  - Took three sources from each bin, with the highest measurements of  $\beta_{apparent}$  and took the corresponding  $L_{core,observed}$ .
  - Assumed  $\theta = \theta_{critical}$  in order to "debeam"  $L_{core,observed}$  for an estimate of  $L_{core,intrinsic}$
  - Averaged  $L_{core,intrinsic}$  for the relation

$$\log L_{core,intrinsic} = 0.542 \log L_{kinetic} + 15.276$$
$$L_{core,observed} = L_{core,intrinsic} \delta^{n}$$
$$\delta = \frac{1}{\Gamma(1 - \beta \cos \theta)}$$



16

Note: Core Luminosities are taken at 300

### LORENTZ FACTOR

- For sources at the critical angle:  $\Gamma \cong \beta_{apparent}$
- Assumed that the upper edge is at the critical angle and  $\Gamma$  is linearly related to  $L_{kinetic}$

$$\Gamma_{max} = 14 L_{kinetic} - 584$$

- Note: this relation was fit by eye
- Looking into two cases:
  - $\Gamma = \Gamma_{max}$
  - $0 < \Gamma < \Gamma_{max}$



#### **RESULTS OF POPULATION MODEL**



#### **INCREASING THE SAMPLE**

- Increasing the sample:
  - Spectral decompositions: ~400 sources total, 180 of them have good spectra (>200 are currently upper limits)
  - Analyzing radio/sub-mm archival data to fill in low frequency spectra

