

Fermi Transients and Multimessenger Observations

Judy Racusin (NASA/GSFC) Michelle Hui (NASA/MSFC) Sermi Short GRBs as Gravitational Wave Counterparts

- Gamma-ray Space Telescope
 - NS-NS & NS-BH mergers should produce a GRB
 - detected if jet is pointed towards Earth (on axis)
- merging compact objects produce GWs
 - we know this for sure from LIGO/Virgo
- If short GRBs are within LIGO detection range and pointed towards Earth, we should see gamma rays & GWs concurrently
- Short GRBs are rare, and LIGO NS-NS range at design sensitivity (2020) is expected to be 200 Mpc (sky and orientation averaged)
 - increases a bit for those on-axis
 - short GRB detection can push GW threshold lower and range higher

- short GRB rates come from gamma-ray observations (inherently accounts for beaming)
 - ~10±5 Gpc⁻³ yr⁻¹ (Guetta and Piran 2006; Nakar et al. 2006; Guetta & Stella 2009, Coward et al. 2012, Wanderman & Piran 2015, Ghirlanda et al. 2016)
- 200 Mpc NS-NS merger range distance (400 Mpc NS+10 M_{\odot} BH)
 - (GW volume)*(Rate/vol) -> 0.34 ± 0.17 sGRBs yr⁻¹
- Enhanced GW amplitude along jet axis range x 1.5
 - -> 1.13 ± 0.57 sGRBs yr⁻¹
- Coincident prompt signal pushes GW threshold lower range x 1.5 (Cutler and Thorne 2002)
 - NS-NS rate: 3.8 ±1.7 sGRBs yr⁻¹ (all sky)
 - NS-BH rate: 30 ±15 sGRBs yr⁻¹ (all sky)
- Scale total rate by fraction of sky covered by instrument field of view and sensitivity
- GW duty cycle

- Gamma-ray Space Telescope
 - NS-NS merger rates from GW observations of GW170817
 - 1540 {-1220,+3200} Gpc⁻³ yr⁻¹ (Abbott et al. 2017)
 - assume same for NS-BH (total speculation)
 - sGRB jet opening half-angle 15-30 deg (Fong et al. 2015) assume 20 deg
 - $-1-\cos(20)=0.06$
 - 200 Mpc NS-NS merger range distance (400 Mpc NS+10 M_☉ BH)
 -> (GW volume)*(1-cos θ)(Rate/vol)
 - 3.1 {-2.5,+12.7) sGRBs yr⁻¹ (NS-NS)
 - 25 {-20,+100) sGRBs yr⁻¹ (NS-BH)
 - Enhanced GW amplitude along jet axis range x 1.5
 - 10.5 {-8,+43} sGRBs yr⁻¹ (NS-NS)
 - 84 {-67,+344} sGRBs yr⁻¹ (NS-BH)
 - Coincident prompt signal pushes GW threshold lower range x 1.5 (Cutler and Thorne 2002)
 - NS-NS rate: 35.5 {-28,+145} sGRBs yr-1 (all sky)
 - NS-BH rate: 283 {-225,+1160} sGRBs yr⁻¹ (all sky)
 - Scale total rate by fraction of sky covered by instrument field of view, sensitivity, GW duty cycle
 - Gamma-ray horizon?

How to optimize GRB/GW coincident observations?

- Need wide field of view instrument
 - detections = sky fraction in FoV * rate
- Need accurate absolute timing (to confirm coincidence)
- Need localization capability
 - spatial coincidence (though timing still useful)
- Need rapid trigger and location dissemination
- Need broad energy coverage with good sensitivity
- Need high rate of GRB detection

• Fermi

Gamma-cay nake Telescope

- GBM is the most prolific detector of short GRBs
- LAT detects afterglow emission from brightest/hardest short GRBs
- LAT is the only instrument capable of searching for GRB afterglows <u>all-sky</u> in reasonable timeframe (~hours), without changing observing strategy

Triggering algorithms:

- In-orbit count rate increase in 2+ Nal detectors above adjustable threshold above background (70 algorithms operating simultaneously)
 - between 4.5 and 7.5 sigma
 - 10 timescales 16ms up to 8.096s
 - 4 energy ranges [50-300], [25-50], >100, >300 keV
- · Ground-based offline search for rate increase
- Long transients and persistent sources:
 - Earth occultation
 - Pulsar phase folding

lightcurves

spectral analysis

https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/

Data products:

- TRIGDAT, triggered data mainly for localization and quick look
 - 1024/256/64 ms, 8 energy channels
- CTIME, continuous high time resolution
 - 256 (64) ms, 8 energy channels
- CSPEC, continuous high spectral resolution
 4096 (1024) ms, 128 energy channels
- TTE / CTTE, time tagged events
 - − 2µs, 128 energy channels both!
 - Continuous TTE enabled Nov 2012, hourly files available

1. Untargeted search for subthreshold GRB candidate events

2. Targeted search using input event time and optional skymap

Extends the onboard trigger algorithms, with improved background model.

- Looks for signals in 2 Nal detectors with 2.5σ and 1.25σ excess above background in the continuous time-tagged events (2µs resolution, 128 energy channels).
- The 2 signal detectors must have valid geometry for a point source.
- 18 timescales: 64ms to 32s.
 - Only candidates <2.8s are reported at the moment.
- 4 energy ranges optimized for short GRBs.
 - 27-539 keV; 50-539 keV; 102-539 keV; 102-985 keV
- Expected rate of notice ~70/month, higher during active periods of galactic transients.
- From April 2017 to now, 64/month, excluding Oct/Nov 2017
 - Found additional burst-like transients from magnetars and Xray binaries, such as
 - AXP CXOU J164710.2-455216 / PSR J1647-4552
 - Swift J0243.6+61
- GRB170817A: could dim x0.5 and still recover by untargeted search.

GBM Untargeted Search

- 318 short, hard candidates found in 46 months in previous study.
 - ⇒~80 per year.

Space Telescope

Candidate Event from Untargeted Search

ermi

- Gamma-ray Space Telescope

Candidate Event from Untargeted Search

- GCN notice type Fermi-GBM SubThreshold now available.
 <u>https://gcn.gsfc.nasa.gov/fermi_gbm_subthreshold.html</u>
- Time delay for notice range from 0.5 to 6 hours, due to telemetry schedule.
- http://gammaray.nsstc.nasa.gov/gbm/science/sgrb_search.html
- Available with the GCN notice:
 - Localization FITS file

GBM Untargeted Search

Gamma-cay Space Telescope

ossibly neutron stars

1. Untargeted search for subthreshold GRB candidate events

2. Targeted search using input event time and optional skymap

GBM Untargeted Search

Coherent search over GBM detectors

- Targeted search in the Continuous Time Tagged Events (CTTE) data. (Blackburn et al. 2015, Goldstein et al. arXiv:1612:02395)
 - Looks for coherent signals in all detectors given an input time and optional skymap.
 - Calculate likelihood ratio of source and background.
 - Search +/- 30 seconds of input event time.

Telescone

- Sliding timescales from 0.256s to 8s (capable down to 0.064s) with a factor of 4 phase shift.
- 3 source spectral templates using Band function: soft, normal, and hard.

$$\begin{array}{c} \begin{array}{c} & \text{product over independent} \\ \text{observations (detectors/} \\ \text{energy channels)} \end{array} \\ P(d_i|H_1) = \prod_i \frac{1}{\sqrt{2\pi}\sigma_{d_i}} \exp\left(-\frac{(\tilde{d}_i - r_i s)^2}{2\sigma_{d_i}^2}\right) \\ \text{likelihood including signal model} \prod_i \frac{1}{\sqrt{2\pi}\sigma_{d_i}} \exp\left(-\frac{\tilde{d}_i^2}{2\sigma_{d_i}^2}\right) \end{array} \\ P(d_i|H_0) = \prod_i \frac{1}{\sqrt{2\pi}\sigma_{n_i}} \exp\left(-\frac{\tilde{d}_i^2}{2\sigma_{n_i}^2}\right) \end{array}$$

GBM Instrument Response

19

🐑 ermi

Control Sample: Swift Detected GRB

Kocevski et al., submitted

Swift GRB also triggered GBM

ermi

- Gamma-ray Space Telescope

Swift GRB did not trigger GBM

Control Sample: Swift Detected GRB

- 42 short GRBS detected by Swift BAT also in GBM FOV (2008 Aug 4 — 2017 Aug 4)
 - 31 detected by both instruments
 - 11 only by Swift

Gramma-cay logice Telescope

Signal-to-noise ratio

intrinsically dim and/or poor viewing geometry by GBM

40/42 detected by the targeted search at >3 σ (likelihood ratio >9)

GRB 170817 can dim by 60% and still discoverable by this search -> increases the volume of the Universe in which GRB 170817 could be detected by factor of 5

22

BAT + GBM Triggers **BAT Only Triggers** GRB 170817 GW 150914 10² 10^{1} 10^{1} 10² 10^{3} 10⁴ log likelihood ratio

Gamma-ray Space Telescope

- Weak signal seen ~0.4 s after the GW trigger, ~1 s duration
- Did not trigger GBM onboard
- Targeted search: energy and detector coherent signal over all 14 detectors (Blackburn+ 2015)
- Raw summed light curve SNR ~6, >50 keV
- Large localization due to poor viewing geometry

- No EM signal expected from BH-BH merger, resulting in much debate and theoretical speculation in the community
 - Rapidly rotating massive star causes dumbbell shaped core that collapses to BHs, merging together quickly with material around for GRB (Loeb et al. 2016)
 - Common envelope phase of merging close binaries (Woosley et al. 2016)
 - Extant BH-BH system that possesses a residual neutral disk at large radii suppressing the magneto-rotational instability (Perna et al. 2016)
 - Role of Winds (Murase et al. 2016)
- Greiner et al. 2016 claimed the signal was consistent with background
 - Only used 1 Nal and 1 BGO detector
 - Signal is only significant when adding all 14 detectors (poor geometry to GBM)
- Connaughton et al. 2018 rebuttal paper

<u>GW150914</u>

	Duration	Localization	Energy Lightcurve Spectrum Shape		Fermi Orbit Position	Origin?	
Lightning (TGFs/TEBs)	No	No	? No		No	No	
Galactic Sources	?	No	No	?	N/A	No	
Solar Activity	?	No	No	No	N/A	No	
Magneto- spheric	No	?	?	No	No	No	
Something New	?	?	? ?		?	Maybe? Unlikely.	
Short GRB	Yes	Yes	Yes	Yes	N/A	Yes	

Short GRB is the most likely explanation.

- LAT detects ~20 GRBs per year (1-2 short GRBs)
 - typically seeded by GBM & Swift GRB detections
 - LAT GRBs tend to be most energetic GRBs with bright afterglows
- LAT sees both prompt emission and afterglow emission
 - longest afterglow detected (GRB 130427A) lasted ~20 hours (Ackermann et al. 2014)
- LAT sees the entire sky every 3 hours
- LAT is the only instrument capable of searching for GRB afterglows <u>all-sky</u> in reasonable timeframe (~hours), without changing observing strategy
- A LAT counterpart would provide:
 - Localizations to aid broadband follow-up
 - High-energy measurement/constrains on prompt and/or afterglow spectra, emission mechanisms
 - constraint or measurement of bulk Lorentz Factor
 - constrain Lorentz Invariance Violation

Fermi Transient Searches

- Search for flares in known sources (blazars, Galactic transients)
- Blind search transient sources on 6 hour & 24 hour timescales
- Used by the Flare Advocates to put out GCNs & ATels & to trigger follow-up observations with Swift, radio, optical
- Reports weekly on flaring sources: http:// fermisky.blogspot.com/
- Nice description: Ciprini et al. 2011, arXiv:1111.6803

Gamma-ray Soace Telescope

> Developed by Jim Chiang, maintained by the flare advocates

- Photometric technique for searching for flaring and variable sources relative to their average flux history
- Splits sky into thousands of pixels, and measures weekly time history of every pixel
- Pixels that flare above a 3σ significance threshold are followed-up by a standard likelihood analysis
- FAVA products public: https://fermi.gsfc.nasa.gov/ssc/data/access/lat/ FAVA/index.php

- Gamma-ray Soace Telescope

 FAVA developed and operated by: Rolf Buehler, Dan Kocevski, Matteo Giommi, and Marco Ajello

- General Catalogs 0FGL, 1FGL, 2FGL, 3FGL
- High-Energy Catalogs 1FHL, 2FHL
- Flaring Source Catalogs 1FAV, 2FAV
- https://fermi.gsfc.nasa.gov/ssc/data/access/lat/4yr_catalog/
- Provides source descriptions for steady sources, or sources flaring enough to be significant in catalog interval
- Relevant for comparisons to sources detected during transient searches

http://www.asdc.asi.it/fermi3fgl/

- Large GW localization regions present unique challenges
 - GW Seed provides time, but large sky region
 - LAT has a large field of view, but exposure varies throughout 2 orbit rocking profile
- GeV band has low rate of transients on short timescales
- GBM provides all-sky coverage (not occulted by Earth), which could provide seed
- LAT team (Giacomo Vianello, Nicola Omodei, Dan Kocevski) have developed pipelines to split LIGO 90% localization contours into pixels (sized ~LAT PSF at 1 GeV) and performed likelihood analyses on each pixel searching for excesses
- Depends on time intervals chosen requires balance between sky coverage and exposure at each point

Fermi Fermi Observations of GW Detections and Candidates Gamma-ray Space Telescope

Fermi Observations of LIGO detections and candidates •

	GW150914	LVT151012	GW151226	GBM Field of View
GBM coverage of LIGO region at trigger time	75%	68%	83%	LIGO
GBM observed entire LIGO region within	25 min	8 min	34 min	Field of View
LAT coverage of LIGO region at trigger time	0%	47%	32%	
LAT observed entire LIGO region within	70 min	113 min	140 min	

GW151226

Samme-ray Space Telescope

Credit: Seth Digel

Samme-ray Space Telescope

Credit: Seth Digel

Flux upper bound

corresponding to

Racusin et al 2017,

Vianello et al. 2017

credibility level

- Fixed interval (± 10 s, 0-10 ks), time it took for LAT to observe 90% of LIGO localization region
- Likelihood analysis performed on each sky pixel over that region
- Flux upper bounds measured for each pixel
- Useful to place single global upper bound in some interval

GW151226

- Time interval set by period in which each pixel in GW localization passed through LAT FoV during some interval (e.g. first two orbits)
- Useful to evaluate LAT upper bound at specific location (e.g. like that of an external counterpart)

Racusin et al 2017. Vianello et al. 2017

GW151226

- GW150914-GBM only candidate counterpart found by GBM, no counterpart seen for LVT151012, GW151226, GW170104, GW170608, GW170814
- No candidate counterparts found by LAT for GW merger events using any of the techniques described
- Lack of GBM counterpart for other events does not contradict GW150914-GBM
 - LIGO localization regions not fully covered at time of triggers
 - to-date GW150914 still has the highest mass and lowest distance, which might correspond to luminosity
 - GBM background rates higher at the times of LVT151012 & GW151226 that GW150914-GBM

GW170817/GRB170817A

🧠 ermi

Gamma-cay Space Telescope

GW170817/GRB170817A

GW170817/GRB170817A

Gamme-cay Space Telescope

Sermi The First Unambiguous Gravitational Wave Counterpart

• GRB170817A / SSS17A / AT 2017gfo

- Short GRB 1.7 s after GW merger
- $D_{GW} = 40 + / 8 Mpc$

- Gamma-ray Space Telescope

- D_{host galaxy}=42.9 Mpc
- $E_{iso} = 3x10^{46} \text{ erg}$
- Optical counterpart detected at T₀+11 hours
- Blue + red kilonova over days/ weeks afterwards
- Apparent off-axis late-peaking X-ray/radio/optical afterglow

Abbott et al. 2017, ApJL

- Typical short (~0.5 s) hard spike
 - $\alpha = -0.62 \pm 0.40$
 - _ E_{peak} = 185 ± 62 keV
- Longer (~1 s) soft thermal tail
 - kT=10.3 ± 1.5 keV

Goldstein et al. 2017

GRB 170817A Properties

ermi

Gamma-ray Space Telescope

46

Jet/Cocoon Structure

🥯 ermi

Fermi-LAT Observations of GW170817/GRB170817A

• LAT was not taking data at merger time (SAA)

Scace Telescope

 Upper limit from first observation perhaps in realm of detections of other LAT short GRBs

LAT Collaboration et al., 2017, arXiV:1710.05450

Optical Counterpart & Host Galaxy

August 21, 2017 Swope & Magellan Telescopes

- See Evans et al. 2017 for more details
- GW170817 occulted by Earth for Swift at time of merger (no BAT observations)
- XRT/UVOT began follow-up observations of GBM localization within ~1 hour
- UVOT detected bright UV counterpart at ~0.6 days at location of Swopes optical counterpart

Gamma-ray cake Telescope

Evans et al. 2017, Science

Villar et al. 2017

Kilonova Spectra

r-Process Nucleosynthesis

1 H		Element Origins													2 He		
Li .	4 Be										S B	e c	N	αO	n e	10 Ne	
11 Na	12 Mg										13 41	14 81	15 m	16 63	17 GF	18 Ar	
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Min	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 6 8	33 As	34 Se	35 Br	36 Kr
87 Rb	08 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Od	49 Jn	50 Sn	51 Sb	52 Te	53 	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	78 Os	77 r	78 Pt	79 Au	50 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	55	66	67	58	69	70	71

Merging Neutron Stars Dying Low Mass Stars

ermi

Gamma-cay Space Telescope

Exploding Massive StarsBig BangExploding White DwarfsCosmic Ray Fission

Eased on graphic mated by Berniter Johnson

s ermi

Gamma-cay Space Telescope

Follow-up to Neutrino Events

- Utilizes all search methods:
 - On-board triggers
 - Targeted search using event time (+/- 30s)
 - Untargeted search within the hour
 - Earth occultation technique (+/- 1 day)
- Upper limits published in GCN circulars
 - IceCube-171015A, GCN #22043
 - IceCube-170321A, GCN #20932
 - IceCube-161103, GCN #20127
 - IceCube-160806A, GCN #19817
 - IceCube-160731, GCN #19758
 - IceCube-160427A, GCN #19364
 - ANTARES 150901, GCN #18352

