

Investigating the Acceleration Potential of a Star Forming Region with 2HWC J203 I+415

Binita Hona Fermi Summer School, 2018

6/5/18

High Altitude Water Cherenkov Observatory

Gamma-Ray Sky with HAWC

Significance Map of Gamma-Ray Excess with HAWC data

6/5/18

Star Forming Regions (SFRs)

- Supernova Remnants (SNRs) as main source of cosmic rays (CRs) in our Galaxy
- SFR as another possible source of CRs in our Galaxy
- CR acceleration mechanisms in SFRs: Proto-stars Collective stellar winds SNRs
- OB2 association in the Cygnus region near 2HWC J203 I+415

Fermi-LAT Cocoon

- Attributed due to a
 Cocoon of freshly
 accelerated Cosmic Rays
- Powered by Supernova Remnant or Star forming region?
- Evidence of star forming region as GCR accelerator
- Unique and only seen at GeV energies – no TeV counterpart so far

6/5/18

VERITAS source VER J2031+415

- Probably a pulsar wind nebula (PWN) (Aliu, E., et al., 2014)
- PSR J2032+4127

 in long-period
 orbit around a Be
 star
 (Lyne, A. G., et al. 2015)

VERITAS Significance Map of the Region

HAWC Map of the Cocoon Region

- Significance map with 1017 days of HAWC data
- White contours:
 VERITAS 5,7 and 9
 significance contours
- Blue contours: Fermi-LAT 0.16, 0.24, 0.32
 photons per bin contours

Multi-Source Fit at the Cocoon Region using 3ML

Ingredients for a multi source fit

VER J2031+415 (included as the background) + Likely Cocoon counterpart + 2HWC J2020+403

VER J2031+415

2D Gaussian HAWC Cocoon Spectral Model: Power law with an exponential cut off 2HWC J2020+403 Spectral Model: Power law

Multi-Source Fit at the Cocoon Region

 Complete model map of the region using Power law spectrum with exponential cutoff

Model map of the Region

HAAWCC High Alfued Vate: Cheronhov Generation

Multi-Source Fit at the Cocoon Region

A good description of TeV gamma-ray emission in the region

Gamma Ray Spectra in the Cocoon Region

Michigan Technological University

6/5/18

Conclusion

- HAWC multi-TeV data of the 2HWC J2031 region is compatible with the Fermi-Lat discovery of a cocoon of freshly accelerated CRs
- HAWC cocoon favors power law spectrum with exponential cutoff

Future Work

- Combined analysis of HAWC and Fermi-LAT data with 3ML software
- Constrain maximum energy of the cosmic ray spectrum in the cocoon

Thank you Fermi School!

