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What is an AGN?

i

-

"S'uper—ilf\“/lassive Black Hole
(SMBH)

10¢ - 10'° solar masses!!




What is an AGN?

Accretion Disk!

Accretion + = Active Galaxy or
Active Galactic Nucleus or AGN

Note: not actually necessarily a “disk” per se

Two main models:

(1) Shakura-Sunyaev (1973)
- aka “Standard Thin Disk”
- aka “Geometrically Thin, Optically Thick”
- gives you a modified black body that peaks in

the optical/UV, sometimes known as the “big blue
bump”




What is an AGN?

Accretion Disk!

Accretion + = Active Galaxy or
Active Galactic Nucleus or AGN

Note: not actually necessarily a “disk” per se
Two main models:

(2) ADAF

- aka “Advection-Dominated Accretion Flow”

- can be optically thin or thick, puffy

- does not give you a modified black body.

- spectrum is rather complex & varies by model
parameters




Shakura-Sunyaev Disk

Classic “modified black body” -
l.e., more or less what you get by
integrating over concentric rings of
black body emission which gets
hotter with decreasing radius.

Shakura & Sunyaev showed that
Temperature ~ R34 regardless of
how gas loses angular momentum
in the disk

In AGN, such a disk produces the
“big blue bump” in the optical/UV




Im 10cm lcm  1mm 100sm 10sm 1um 10004 1keV 1keV 10keV100keV

Jet Mass-loss via NGC4594
“\\ ADAF winds 43+ T

Thin disk

Transition ADA F

radius

T — '| '(1'}1“' 6 18 20
0g(v | Hz

Model developed for LLAGN (Nemmen+ 2014). Inner “puffy”

ADAF disk transitions to thin disk on large scales. Jet may or

may not be present (or dominant) but outflows are ubiquitous.
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Figure 3. Models for the SED of NGC 4374/M8&4 showing the emission of the ADAF (dashed), jet (dot-dashed), truncated thin disk
(dotted) and the total emission (solid). Left: model in which the ADAF dominates the observed X-ray emission (“AD model”). Right:
model in which the jet dominates the X-ray output (“JD model”).

MeV can break the degeneracy between jet and accretion-disk dominated models for the
X-rays, as shown above. This is a long-term project for AMEGO or similar missions (fluxes
are likely just below the 3-year sensitivity). Assuming a long-lived mission, nearby LLAGN
are a likely source population.
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How Big Is the Black Hole?

What is the inner-most stable orbit of a black hole (ISCO)?

- 6GM

Tisco = = 3R
2
C
For 10° M_, r__ = 0.05 AU* (10x sun radius or 8x closer than mercury)
For 10° M_, r__ = 50 AU (A bit beyond the Kuiper Belt)

In theorist units:
For 10° M, -» 7.5x10"* cm and  for 10° M, - 7.5x10* cm

However:

A maximally spinning (Kerr) black hole has r_ = 9R_if the disk is
retrograde and 1R_ if it is prograde.

*Google makes this easy: [ 6*G*(mass of the sun)*1e6/c™2 in AU ]



How Big is the Accretion Disk?

Suzy Collin and Jean-Marc Huré: The Size-Mass-Luminosity Relations in AGN.

__ BlRclouds
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Fig. 1. Schematic view of the most central region of an AGN. The scaling depends slightly on the mass and on the
accretion rate, and is appropriate for a 10% My black hole (Rg ~ 1.5 x 10'? cm) accreting at 7 ~ 0.1 in Eddington

units. \(1 AU)

Inner (hot) disk is on the order of 100s to 1000s of AU.
Typical Star Separations in the solar neighborhood are around 500k AU




The ‘Central Engine’

« Accretion can be very efficient at turning GPE into radiation

Gravitational potential energy released for an
object with mass M and radius R when mass
m is accreted:

3 A _; , ' Eacc = GMm/R = (RS/R)mCZ

In reality there is an efficiency parameter:

Eacc=n*mc2 n ~ 0.1

Far more efficient than nuclear fusion:
(H => He) ~ 0.007mc?

AGN Luminosities can reach up to 10%° erg/s!!
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The ‘Central Engine’

Galaxy lum. Fn. Sample of SDSS AGN
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AGN can easily outshine the host galaxy of billions of stars!
But there are also a large population of low-luminosity (LL) AGN




Why “active”?

 Emission Lines!
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Earliest ‘active galaxies’ were identified in the 1940s by ground-based
spectroscopy - had “very unusual” spectra

Lines can be narrow (~300-1000 km/s) or broad (3000-10,000 km/s!)

These lines come from gas clouds ionized by the central AGN disk -
strong lines imply strong continuum!




The Standard Model

Narrow Line The Standard Model also posits an
/Flegion obscuring molecular torus (MT) of dust

Broad Line Explains why we only see narrow lines in
Region some AGN (known as “type 2” AGN)

BLR - Broad Line Region:
Accretion

Disk very close to the black hole (10 cm)

probed by reverberation mapping

e

Obscuring Doppler broadened due to fast

Torus motions of gas

dense (lack of forbidden lines):
n,>~ 10% cm?

blocked by MT at large viewing anglm




The Standard Model

) NLR - Narrow Line Region:

egion

Gas clouds far from the black hole
Broad Line 100s to 1000s of parsecs =
aellely 1021-1023 cm!

Does not obviously respond to the

Accretion central continuum

Disk

Further out = less gravitational
potential = slower motions

e

Obscuring Less dense:
Torus n ~103-10cm>3
e

Not blocked by MT
(except for “changing look” AGN?)

Grossly out of scale!
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The Standard Model
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Outflows

Wide- scale outﬂows 3

“winds” are common%

.Typically on. th,ﬂe"s' -ale
-galaxies y

~Not collimated = 8.

100-1x10° km/s

Can clear a galaxy of , 2 2
the gas needed' t‘o form
stars B w c

~. Outflows can be
lonized gas (typically
seen inioptical lines)
or*molecular gas
(ALMA)




Outflows

by - , ! R ; -
Wide-scale outflowS'aka "
“winds” are common% § =

5

Typically on the SEale'o

“galaxies

~. . Outflows can be
lonized gas (typically

'100-1x10° km/s . “ % seen iploptical lines)
— - oLanolecular gas

Nature Astronomy PERSPECTIVE VAR\IP2Y)

AGN outflows and feedback twenty years on

C.M. Harrison', T. Costa2, C.N. Tadhunter®, A. Fliitsch*®, D. Kakkad®, M. Perna’, G. Vietri®°1
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Relativistic Jets!

About 10% of AGN have Jets of relativistic, fully ionized plasma

Emit synchrotron radiation VA Sacn o
from radio to X-rays 3C 353 (NRAO)
Thus, “radio-loud” AGN

Kinetic Powers up to 1046 erg s
Lifetimes ~ 107 yr (?)
Jet lengths can reach several Mpc (102> cm!)
— up to 1 billion times the scale of the SMBH
MS0735.6 Heating of the galaxy-scale gas
(McNamara et al 2009) and cluster medium




The SED of a jetted AGN

Radio Emission is Synchrotron Emission from a Relativistic Plasma

f Generally assume a power-law distribution of electrons:
n(v) = Y‘p

For a peak (in vF ) in the optical: maxy ~ 10°
slope = {1—&),"2_
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Emission is strongly beamed!

Bulk

Lorentz factors I' ~ 2-50 (0.87-0.9998 c)

(Compare to GRB: 50-500, or X-ray binaries, I <~2)
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* Doppler Boosting of the Apparent Luminosity and Peak
Frequency (Cartoon)
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Inverse Compton Emission

Compton scattering — photons loose energy
N —— Roughly, scattered photon
has frequency v=y?v,

electron
Low energy
electron
-9
10 : Syr;chrotron' '
Inverse-compton «eeeeees
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photon e : .
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Energy loss rates:
Figure 6: The two Compton scattering processes TR - — 2 2
result in radiation being shifted to lower energies IC ) dE/dt (4/3)GTcurad [3 }’
(Compton scattering) or higher energies (inverse 5 5
Compton scattering). The essential factor - —
P J Sync: -dE/dt= (4/3)01CUp,q B Y

differentiating these two processes is the kinetic
energy of the electron involved. ﬁ



Inverse Compton Emission

 Requires a source of external photons

“External Compton” (EC) - accretion
Narrow Line disk, BLR, molecular torus, in special
/Flegion cases the CMB or EBL

Rogon “Synchrotron Self-Compton” (SSC) -
_ photons from the jet itself
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The SED of a jetted AGN

; — Synchrotron Jet
Inverse Compton Jet
Radio Lobes
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Radio Loud AGN Unification

(beyond orientation)

Blazar Spectral Type
Radio Galaxy

Morphology . 1RKS J12414.8-14555
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FR I. brightest
at the center,
“plumey jets”

AGN Unification: Zeroth Order

Radio Galaxy

o

&

FR Il: brightest in
the lobes,
collimated jets
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Direct view of the jet!
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The Radio SED (real life)

« Synchrotron emission comes
from all along the jet, but what
tends to dominate is the lobe
(unbeamed) at low frequencies,
and the core (beamed, variable)
at higher frequencies.

Here are shown to sources with
very different lobe luminosities,
indicating jets with /intrinsically
different time-averaged power
output.




The Blazar SED

Peak frequency,

wide range
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The Blazar Sequence
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The Blazar Sequence
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(A)
Empty due to
missing
redshifts?

/m

Sources here were

found (Nieppola : :
2006, Landt 2006, BL Lacs: Jet Power uncorrelated with Vo

Caccianiga 2004) .

log (1 )

- peak,syne



The Blazar ‘Envelope’
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“Simple jet”
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What are we working on now?

How are these jets created? Why only 10%?7

How are different kinds of AGN related in the bigger picture?
What are the jets made of?

How much energy do they carry, and how long do they live?

How important are they to the host galaxy & the evolution of galaxies and
clusters?

Do all galaxies have a jet phase? How do we grow black holes?

ﬁ



The Era of EGRET (1991-2000)

ItETTT T L L At the tlme EGRET was
- i launched in 1991, 3C 273 was
the only extragalactic source

known to emit y-rays
(Mukherjee 2001)

10%E

i EGRET detected ~ 70 blazars,
E mostly FSRQs

Q
%

The famous ‘Blazar
Sequence’ (Fossati+ 1998)
was based on EGRET data
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The Fermi Era (2008 - present)

1 FGL Catalog (11 Months): ~ 1500 sources, ~ 680 associated to blazars
2 FGL Catalog (24 Months): ~ 1900 sources, ~ 830 RL AGN (mostly assoc.)

3 FGL Catalog (48 Months): 3033 sources! 1162 RL AGN

“Relative to the 2FGL catalog, the 3FGL catalog incorporates twice as much
data as well as a number of analysis improvements, including improved
calibrations at the event reconstruction level, an updated model for Galactic
diffuse y-ray emission, a refined procedure for source detection, and improved
methods for associating LAT sources with potential counterparts at other
wavelengths”

4FGL Catalog will contain 8 years of data, 5523 sources

Preliminary Source list available here:
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/
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https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/

Multi-wavelength Support & Campaigns

Multiwavelength Observing - Support Programs

A number of observing programs have been established to provide either regular monitoring or targeted observations specifically
designed to help support the Fermi science effort. Many of the programs listed below provide their datasets publicly as a service to
the science community. These data are not part of the Fermi public dataset, so their use should be coordinated directly with the
project leads. Please refer to each site for data usage and/or attribution information. For more information on coordinated
observations with the LAT, please contact the LAT Multiwavelength Coordinating Group.

Blazar Monitoring

The Radio/Gamma-ray AGN Working Group Home Page provides more information on ongoing science and data acquisition activities
in support of Fermi AGN Science.

Blazar Monitoring List
This page contains all blazars known to be regularly monitored at optical wavelengths, plus all the MOJAVE and Boston
University monitored sources and known TeV blazars. (Courtesy of the Mojave group).
Owens Valley Radio Observatory (OVRO) Monitoring of Fermi Blazars
40M Radio telescope (15 GHz) monitoring more than 1200 blazars about twice per week.
MOJAVE/2cm Survey Data Archive
An imaging survey of compact radio sources at 15 GHz. Many sources are from the Fermi-LAT First Point Source Catalog
University of Michigan Radio Astronomy Observatory
Tabulated daily averages for flaring gamma-ray blazars.
TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry)
Tracking the jets of flaring Fermi blazars south of -30 degrees declination at 8.4GHz and 22GHz
Boston University Blazar Group
Provides monthly Images of gamma-ray blazars with the VLBA at 43 GHz
SMARTS Optical/IR Observationsof LAT Monitored Blazars
Uses three telescopes at CTIO to monitor all blazars on the LAT Monitored Sources List that are viewable from Chile
Optical Linear Polarization Monitoring of Bright Fermi Blazars
Regular monitoring of gamma-ray bright blazars from University of Arizona's Steward Observatory
Swift-XRT Monitoring of Fermi-LAT Sources of Interest
Near-real time monitoring of sources on the LAT Monitored Sources List from the Swift XRT instrument
VIPS (The VLBA Imaging and Polarimetry Survey)
A combined 5 GHz and 15 GHz survey with the Very Long Baseline Array of ~1100 active galactic nuclei (AGN) with full
polarization and high dynamic range
Goddard Robotic Telescope (GRT)
A 14" robotic telescope project whise goal is to understand the jet physics through the muti-wavelength observations of the
Gamma-ray Bursts (GRBs) and the Active Galactic Nuclei (AGNs).
KAIT Fermi AGN Light-curve Reservoir
This web page shows the light curves of AGNs that are monitored by KAIT with average cadence of 3 days
« VLA observations of Fermi unassociated sources
Has an aim to undertake a detailed examination of every Fermi detected object in the northern sky with declination > +10 deg
not yet associated with a known source type (blazar, pulsar, etc.).
« VLBA Observations of TeV Blazars
This is an archive of all of the VLBA data they have obtained on TeV-emitting HBLs during the course of their research
program. This archive contains data beginning with observations of Markarian 421 in 1994, and continuing to the present.

Source (link to more information)

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign

1H 0323+342: Multi-frequency campaign
Mrk421: Multi-frequency campaign

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign

Mrk501: Multi-frequency campaign

Mrk421: Multi-frequency campaign
PSRB1259-63/SS2883 2010/2011 MW Campaign
Mrk421: Multi-frequency campaign

PMN J0948+0022: Multiwavelength campaign
Mrk501: Multiwavelength campaign

3C279: Planned Intensive campaign

Time Interval

2018 April - 2018 Sept. - Current
2017 Dec. - 2018 May - Current
2017 April - 2017 Aug

2016 Nov - 2017 May

2016 March - 2016 September
2015 Dec - 2016 May

2015 August - 2015 December
2015 January - 2015 May
2014 March - 2014 August
2013 Dec - 2014 May

2013 April - 2013 August

2012 Dec - 2013 June

2012 Feb - 2012 July

2011 Dec - 2012 June

2011 March - 2011 Sep.

2010 Dec - 2011 Dec

2010 Nov. -2011 Feb.

2009 Dec - 2010 Dec

2009 Mar (end) - June (end)
2009 Mar (mid) - July (end)

2009 Jan (end) - Mar (mid)

https://confluence.slac.stanford.edu/display/

GLAMCOG/

Fermi+LAT+Multiwavelength+Coordinating+Group




Results: The Markarians
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Results: The Lobes of Cen A

Centaurus A - one of the nearest radio
galaxies

Lobes are 10 degrees across (600 kpc)

“Purple Glow” at left is a resolved
detection from Fermi/LAT (Sun+ 2016)




Results: The Lobes of Cen A
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Fig. 7. Broadband SEDs for each region shown in Figure 3. Observed radio and Plunck data (black dots with error bars) are fitted with a synchrotron
I (0) b e ) - | e pto - model. Observed Fermi-LAT data (red dots with error bars) are fitted with the inverse-Compton (IC) scatterings of the CMB and EBL photon fields
. except for S1, which only requires the seed photon contribution from the CMB. The upper limits are calculated within a 30~ confidence level.
hadronic models

also considered.




Results: Variability
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Results: Fast Variability
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Results: MINUTE-timescale Variability
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Results: MINUTE-timescale Variability
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Figure 2. Light curves of 3C 279 above 100 MeV with minute-timescale intervals. (a): Intervals of 5 min (red) and 3 min (green) during the outburst phase
from Orbits B-J. (b): Enlarged view during Orbits C and D. Each range is indicated with dotted vertical lines in (a). The points denote the fluxes (left axis), and
the gray shaded histograms represent numbers of events (right axis) detected within 8° radius centered at 3C 279 for each bin. Contamination from both diffuse
components were estimated as ~ 1 photon for each 3-min bin.
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Results: Gamma-Rays from RG
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Results: Gamma-Rays from RG
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Results: Monster Black Holes
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Figure 2. Comparison of new ~y-ray detected high-z blazars with 3LAC objects in, left: «y-ray luminosity vs. photon index plane, and right: the
redshift histogram. The plotted L., and I', are derived for the 0.1 —-300 GeV energy band, both for 3LAC and high-z blazars newly detected in
~-rays, for an equal comparison.

These blazars have SMBH on the order of 10°2-101° when the Universe
is only 2 Billion years old! [Ackermann+ 2017]




Radio Lobes can measure the EBL

(Georganopoulos+ 2008)
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Results: Fornax A
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Results: Fornax A

)

|
—
—
e

Synchrotron

= Model IC/EBL (Finke+2010)

. IC /IR host

=14} galaxy photons
HHH HH Fermi-LAT

=15H1 [ Radio
T T WMAP
=16} I ROSAT
|1 1 EGRET

i
i
v
v
]
i
i

IC/CMB

]
] \ !
llllll
||||
\\\\
L ] “

.
[
i

!
L ‘|
1Y “i
i
!

log(vf,) (ergcm 2 s

10IJI115HHII20IIJl25
log(v) (Hz)

Ackermann+ 2016 (Fermi Collaboration) .



Aside: The Need for an ‘MeV Fermi’

AP Librae

Complex “extremely
broad” Compton
component. No MeV
constraints.
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