



## Probability, Statistics, and Maximum Likelihood

Fermi Summer School

J. Patrick Harding Los Alamos National Laboratory 29 May 2018



Overview



#### 1) Statistics and Probability

- 2) Likelihood Analysis
- 3) Maximum Likelihood Ratio Test
- 4) Advanced Likelihood Topics
  - Trials Factors
  - Uncertainty in Background Measurement
  - Tools for Maximizing Likelihood



1) Statistics



#### Notation:

- P(x;p) is probability of measuring x given inputs p
- Probability Density Function (pdf) f(x;p)
  - dP(x;p) = f(x;p)dx is differential probability for continuous variables x given inputs p
- Cumulative distribution function (cdf)

$$F(x;p) = \int_{-\infty}^{\infty} f(x;p) dx$$



# What do you need to calculate parameter

Statistical distribution of the data
 Pick your statistical framework

1)Bayesian or Frequentist?

3)Calculate

- 1)Parameter value
- 2)Confidence Interval
- 3)Significance of the parameter



# What do you need to calculate parameter



## 1)Statistical distribution of the data

#### 2)Pick your statistical framework

1)Bayesian or Frequentist?

#### 3)Calculate

- 1)Parameter value
- 2)Confidence Interval
- 3)Significance of the parameter



## **Poisson Distribution**



Tail

- "Counting Statistics"
- Measured discrete variable n with expected value m
- Probability  $P(m;n) = \frac{m''e}{n!}$
- Mean *m*
- Standard deviation  $\sqrt{m}$



n

 For large numbers *m* and *n*, approximates to a Gaussian (via Sterling's approximation)





- Measured **continuous** variable x with expected value  $\mu$  and width  $\sigma$
- pdf  $f(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[\frac{-(x-\mu)^2}{2\sigma^2}\right]$
- Mean  $\mu$
- Standard Deviation  $\sigma$





Width independent of mean

No Tail



# What do you need to calculate parameter

1)Statistical distribution of the data

#### 2)Pick your statistical framework

#### **1)Bayesian or Frequentist?**

#### 3)Calculate

#### **1)Parameter value**

#### 2)Confidence Interval

3)Significance of the parameter



# Confidence Intervals



- Bayesian
  - 1) Assumes answer follows a distribution
  - 2) Assume a "prior distribution" based on preexisting knowledge/prejudice
  - 3) Take some data
  - 4) Update prior distribution to "posterior distribution" based on data
  - 5) Get confidence interval from posterior distribution
  - 6) Is fraction of time distribution is in interval
- Answer depends on your initial prior







#### • Frequentist

- 1) Assumes there is a single correct answer but that sampled size is finite
- 2) Take some data
- 3) Assume data is representative of the full distribution
- 4) Get confidence interval from data distribution
- 5) Is fraction of time a random data point lies in that interval
- Prior knowledge goes into model interpretation of confidence interval







- Bayesian
  - Answer is the distribution of true values
  - Confidence interval is a range in the distribution
  - Depends on prior knowledge
- Frequentist
  - Answer is a guess at the "right value"
  - Confidence interval is how likely you are to guess the right value is in that interval once you've taken data







# What do you need to calculate parameter

- Statistical distribution of the data
  Pick your statistical framework
  Bayesian or Frequentist?
- 3)Calculate
  - 1)Parameter value
  - 2)Confidence Interval
  - **3)Significance of the parameter**



## Significance and "p-values"



- Statistical significance is a measure of how well the null result can reproduce the data
- The p-value says how probable it is that the data is due to background fluctuations:
  - $p \sim 1$  is likely to be from background
  - $p \sim 0$  is likely not due to background
  - value itself depends on the underlying null model assumed (examples later)
- Significance ( $\sigma$ ) is often interpreted as the number of standard deviations in the background which would be necessary to reproduce the data





- We are going to use a pseudo-Bayesian analysis for this discussion
- Using methods of a Bayesian analysis, but without using priors
  - Prior knowledge goes into our model instead of our statistics
- Interpreting results as a Frequentist
  - e.g. What is our PSF?
  - e.g. What is the flux from the Crab?



## Source Model



- Model includes everything you know (or wish to know) about a source
- Known parameters and free parameters are both included
- Qualitative behavior is assumed from prior knowledge
  - PSF is Gaussian (or double-Gaussian)
  - Extended source vs point source
  - Steady in time vs decaying signal in time



## Your Significance is Only as Good as Your Model







#### Example:

(Significances assuming one free parameter) Model 1: 3.7 $\sigma$ 



Model 3: 4.06σ





## Likelihood



- Likelihood  ${\mathcal L}$  is the product of the probabilities of each bin
- For Poisson probabilities:

$$\mathcal{L} = \prod_{k} P_{k} = \prod_{k} \frac{m_{k}^{n_{k}} e^{-m_{k}}}{n_{k}!}$$

$$ln(\mathcal{L}) = \sum_{k} ln(P_{k}) = \sum_{k} n_{k} ln(m_{k}) - m_{k} - ln(n_{k}!)$$

- Likelihood by itself *does not* tell you any information about the goodness/badness of your model fit to the data
- *Note*: the n! term does not affect the outcome of the significance calculations (as we will see)



# Binned vs Unbinned Analysis



#### Unbinned

- Loop over each event
- Don't lose information
  - Makes the most out of each piece of data
- For large data sets, is computationally cumbersome
  - Doesn't necessarily gain much information

#### Binned

- If too much data is cumbersome, we combine it into bins
- Bins can be in anything:
  - Time
  - Space/solid angle
  - Energy

. . .

Reconstruction quality

J. Patrick Harding





- Your model M has parameters p
- For any set of parameters p\*, this model gives a prediction for each bin, m<sub>k</sub>
- Given your measured bin data n<sub>k</sub>, find the set of parameters p that gives the model that maximizes  $\mathcal{L}$  (or In $\mathcal{L}$ )
- Can use fitting techniques (discussed later) to find  $\mathcal{L}_{_{\rm max}}$
- Note: Often easier to minimize - $\ensuremath{\mathcal{L}}$



## 3) Maximum Likelihood Ratio Test



- To determine the significance of your model  $M_1$ , you must define a null hypothesis  $M_0$  to compare to
- Separately maximize the likelihood of  $\rm M_{_0}$  and  $\rm M_{_1}$  with respect to their parameters p
- The ratio of  $\mathcal{L}_{max,1}/\mathcal{L}_{max,0}$  is used to determine the significance of  $M_1$  over  $M_0$



Test Statistic



- Likelihood ratio test uses a test statistic TS to determine significance:  $TS = 2\ln(\mathcal{L}_{max,1}) - 2\ln(\mathcal{L}_{max,0})$
- Note:  $TS_{max} \neq 2ln(\mathcal{L}_{max,1}) 2ln(\mathcal{L}_{max,0})$ 
  - Need to maximize each separately



## Nested Models



- If model  $M_0$  is *identical* to with some of its parameters set to fixed values, then these models are "nested"
- For nested models  $M_0$  with  $v_0$  free parameters and  $M_1$  with  $v_1$  free parameters, and a *large* number of counts, *TS* follows a  $\chi^2$ -distribution with  $(v_1 - v_0)$  degrees of freedom (Wilks' Thm)





The  $\chi^2$ -Distribution



- The  $\chi^2$ -distribution with  $\nu$  degrees of freedom has the pdf:

$$f(x;v) = \frac{x^{\nu/2-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}$$

• The cumulative distribution function is:





The  $\chi^2$ -Distribution



- The  $\chi^2$ -distribution with  $\nu$  degrees of freedom has the pdf:

$$f(x;v) = \frac{x^{\nu/2-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}$$

• The cumulative distribution function is:





The  $\chi^2$ -Distribution



- The  $\chi^2$ -distribution with v degrees of freedom has the pdf:

$$f(x;v) = \frac{x^{\nu/2-1}e^{-x/2}}{2^{\nu/2}\Gamma(\nu/2)}$$

• The cumulative distribution function is:





# **Confidence Intervals**



- Q: Why are 1- $\sigma$  at 68% and 2- $\sigma$  at 95%?
- A: Because we like Gaussian p-values.
  - For a Gaussian of width  $\sigma$  peaked at  $x=\mu$ ,
    - 68.27% of the curve lies within  $-\sigma \le x \mu \le \sigma$
    - 95.45% of the curve lies within  $-2\sigma \le x \mu \le 2\sigma$
    - erf(q/ $\sqrt{2}$ ) of the curve lies within  $-q\sigma \le x \mu \le q\sigma$





 For a TS which follows the χ<sup>2</sup>-distribution with ν degrees of freedom, the corresponding confidence level and significance are:

| C.L.      | σ | d.o.f.=1 | d.o.f.=2 | d.o.f.=3 | d.o.f.=4 | d.o.f.=5 | d.o.f.=6 |
|-----------|---|----------|----------|----------|----------|----------|----------|
| 68.27%    | 1 | 1.00     | 2.30     | 3.53     | 4.72     | 5.89     | 7.04     |
| 95.45%    | 2 | 4.00     | 6.17     | 8.02     | 9.70     | 11.3     | 12.8     |
| 99.73%    | 3 | 9.00     | 11.8     | 14.2     | 16.3     | 18.2     | 20.1     |
| 99.994%   | 4 | 16.0     | 19.3     | 22.1     | 24.5     | 26.8     | 28.9     |
| 99.99994% | 5 | 25.0     | 28.7     | 31.8     | 34.6     | 37.1     | 39.5     |

• For error bars on a parameters p, find the parameter values  $p^*$  for which  $\Delta TS = TS_{max}$ - $TS(p^*)$ =this value





## 4a) Trials Factors



- If you observe 400 random points in space and see one at 3- $\sigma$  (99.73% CL), should you get excited?
  - No, you'd expect ~1 3-σ background fluctuation for each ~370 points (0.27/100\*370=1)
- The mathematical way to account for this is a "trials factor" which reduces the significance based on the probability of the fluctuation coming from background when you try multiple points at random



## When You Need a Trials Factor



- You need a trials factor if you are:
  - doing an unbiased search of multiple locations looking for any sources
  - looking at a single source location with multiple spectral assumptions
  - looking at a single source but letting the location float
- If you are looking for a source with a fixed, known location and spectrum (e.g. the Crab), then you do not need trials. That's about it.



## How Trials Hurt Significance





100

 $10^{4}$ 

10<sup>10</sup>

10<sup>8</sup>

Ntrials

10<sup>6</sup>

10<sup>12</sup>

- Small effect if large significance, small number of trials
- Z1-Z5 are a "post-trials significance" of 1-5

 Note: Definition based on Bonferonni Method

> Figure courtesy of J. Linnemann

10<sup>16</sup>

10<sup>14</sup>







# 4b) Uncertainty in the Background



- So far, we have assumed that the background is perfectly measured and has no uncertainty
- In truth, we get our background from data, and data has uncertainties
  - Lots of time spent looking at nothingto quantify backgrounds
- Example: the background  $N_{B}$  is oversampled, from a large data set  $N_{off}$  of size  $N_{B} = \alpha N_{off}$



## Li & Ma Single-bin Analysis



- Li & Ma (1983) treats the single-bin version of an uncertain background in the case of large number of statistics
- In that case, the significance is:

$$\sigma = \sqrt{2} \left\{ N_{on} ln \left[ \frac{1 + \alpha}{\alpha} \left( \frac{N_{on}}{N_{on} + N_{off}} \right) \right] + N_{off} ln \left[ (1 + \alpha) \left( \frac{N_{off}}{N_{on} + N_{off}} \right) \right] \right\}^{1/2}$$

- Used in many particle and astrophysics calculations
- Available at adsabs.harvard.edu/full/1983ApJ...272..317L



## Including Uncertainty Los Alam in the Background

- To completely include uncertainty in the background, you need to include a model of your full oversampled background in the calculation
- For a true number of background events b, we need to know not just the probability of observing at least  $N_{on}$  events given  $\alpha$ b but also know the probability of the unknown quantity b given our measured number of total background events  $N_{off}$  (Alexandreas et al 1993)

$$P(\geq N_{on}; \alpha, N_{off}) = \sum_{n_{on}=N_{on}}^{\infty} \int_{b=0}^{\infty} db P(N_{off}; b) P(n_{on}; \alpha b)$$

or an equivalent analytic expression therein



## 4c) Tools for Maximizing Likelihood



- Analytic
- Grid
- Minuit
- Markov-Chain Monte Carlo





- Calculus for the win!
- Solving  $\partial \mathcal{L} / \partial p = 0$  (or  $\nabla_p \mathcal{L} = 0$ ) analytically makes the maximization quick
  - Sometimes, you can maximize w.r.t.  $p_1$ analytically but need to do  $p_2$  numerically
  - Sometimes, you need to re-parameterize in terms of p<sub>1</sub>'=f(p<sub>1</sub>,p<sub>2</sub>) to analytically do it
- Warning:  $\frac{\partial}{\partial p} \sum_{k} ln(P_{k}(p)) = \sum_{k} \frac{\partial}{\partial p} ln(P_{k}(p)) = 0$ does not mean  $\frac{\partial}{\partial p} ln(P_{k}(p)) = 0$



Grid Search



- Try a few sample points in each parameter to find the set of parameters with the maximum likelihood
- Can be computationally very expensive
  - For 3 parameters, 100 sample points each you need to calculate the likelihood 1,000,000 times
- If parameter space has peaks and valleys, easy to miss global maximum



Minuit



- Fitting tool available in ROOT software
- Typically use MIGRAD routine
  - Uses derivatives to find its way through parameter space to maximum likelihood
- Can be fast, even for a few parameters
- Still need to be careful about peaks and valleys in parameter space giving you false best-fits



## Markov-Chain Monte Carlo (MCMC)



- One useful method to get the full distribution of *TS* (or anything) for a model is MCMC
- You basically wander around in parameter space from regions of lower probability to regions of higher probability, stopping when you find the maximum
- Using the Metropolis-Hastings algorithm, you don't always move to the higher-probability point
  - You stay where you are sometime, based on the ratio of P(your location)/P(new location)
- Doing this, you map out the full probability space while simultaneously finding the maximum



## For More Info



- Particle Data Group Statistics and Probability
  - pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf
- Last Year's Lecture (by Liz Hayes)
  - confluence.slac.stanford.edu/display/LSP/Fermi+Su mmer+School+2017