
Fermi Summer School

J. Patrick Harding
Los Alamos National Laboratory

29 May 2018

Probability, 
Statistics, and 

Maximum Likelihood



J. Patrick Harding 2

Overview

1) Statistics and Probability

2) Likelihood Analysis

3) Maximum Likelihood Ratio Test

4) Advanced Likelihood Topics
– Trials Factors
– Uncertainty in Background Measurement
– Tools for Maximizing Likelihood
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1) Statistics

Notation:
● P(x;p) is probability of measuring x given 

inputs p
● Probability Density Function (pdf) ƒ(x;p)

– dP(x;p) = ƒ(x;p)dx is differential probability 
for continuous variables x given inputs p

● Cumulative distribution function (cdf)

F (x ;p)=∫
−∞

x

ƒ (x ;p)dx
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What do you need to 
calculate parameter 

values and uncertainties?
1)Statistical distribution of the data

2)Pick your statistical framework

1)Bayesian or Frequentist?

3)Calculate

1)Parameter value

2)Confidence Interval

3)Significance of the parameter
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Poisson Distribution

● “Counting Statistics”
● Measured discrete variable n with 

expected value m
● Probability 
● Mean m
● Standard deviation √m
● For large numbers m and n, 

approximates to a Gaussian (via 
Sterling's approximation)

P (m;n)=
mne−m

n!

TailDiscrete
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Gaussian Distribution

● Measured continuous variable x with 
expected value μ and width σ

● pdf

● Mean μ
● Standard Deviation σ

f (x ;μ ,σ)=
1

σ √2π
exp [−(x−μ)2

2σ2 ]
No Tail

Width independent of mean
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Confidence Intervals
● Bayesian

1) Assumes answer follows a distribution

2) Assume a “prior distribution” based on pre-
existing knowledge/prejudice

3) Take some data

4) Update prior distribution to “posterior 
distribution” based on data

5) Get confidence interval from posterior 
distribution

6) Is fraction of time distribution is in interval

● Answer depends on your initial prior
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Confidence Intervals
● Frequentist

1) Assumes there is a single correct answer but 
that sampled size is finite

2) Take some data

3) Assume data is representative of the full 
distribution

4) Get confidence interval from data distribution

5) Is fraction of time a random data point lies in 
that interval

● Prior knowledge goes into model 
interpretation of confidence interval
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Bayesian vs. 
Frequentist

● Bayesian
– Answer is the distribution of true values
– Confidence interval is a range in the 

distribution
– Depends on prior knowledge

● Frequentist
– Answer is a guess at the “right value”
– Confidence interval is how likely you are to 

guess the right value is in that interval once 
you've taken data
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Bayesian vs. 
Frequentist

10±3

FrequentistBayesian

Width of the 
distribution

Max of the 
distribution

Range the right 
answer may be in

Guess at right 
answer
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Significance and
“p-values”

● Statistical significance is a measure of how well 
the null result can reproduce the data

● The p-value says how probable it is that the data 
is due to background fluctuations:

– p~1 is likely to be from background

– p~0 is likely not due to background

– value itself depends on the underlying null 
model assumed (examples later)

● Significance (σ) is often interpreted as the number 
of standard deviations in the background which 
would be necessary to reproduce the data
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2) Likelihood Analysis

● We are going to use a pseudo-Bayesian 
analysis for this discussion

● Using methods of a Bayesian analysis, 
but without using priors
– Prior knowledge goes into our model instead 

of our statistics

● Interpreting results as a Frequentist
– e.g. - What is our PSF?
– e.g. - What is the flux from the Crab?
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Source Model
● Model includes everything you know (or 

wish to know) about a source
● Known parameters and free parameters 

are both included
● Qualitative behavior is assumed from 

prior knowledge
– PSF is Gaussian (or double-Gaussian)
– Extended source vs point source
– Steady in time vs decaying signal in time
– ...
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Your Significance is 
Only as Good as

Your Model
                       Example:
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Model 2: 4.05σ Model 3: 4.06σ

(Significances 
assuming one 

free parameter)
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Likelihood

ℒ=∏k
Pk=∏k

mk
nk e−mk

nk !

ln(ℒ)=∑k
ln(Pk)=∑k

nk ln(mk)−mk−ln(nk !)

● Likelihood ℒ is the product of the probabilities of 
each bin

● For Poisson probabilities:

● Likelihood by itself does not tell you any 
information about the goodness/badness of your 
model fit to the data

● Note: the n! term does not affect the outcome of 
the significance calculations (as we will see)
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Binned vs 
Unbinned Analysis

Binned

● If too much data is 
cumbersome, we 
combine it into bins

● Bins can be in anything:

– Time

– Space/solid angle

– Energy

– Reconstruction quality

– ...

Unbinned

● Loop over each event

● Don't lose information

– Makes the most out 
of each piece of data

● For large data sets, is 
computationally 
cumbersome

– Doesn't necessarily 
gain much 
information 
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Maximizing Likelihood
● Your model M has parameters p
● For any set of parameters p*, this model 

gives a prediction for each bin, m
k

● Given your measured bin data n
k
, find 

the set of parameters p that gives the 
model that maximizes ℒ (or lnℒ)

● Can use fitting techniques (discussed 
later) to find ℒ

max
 

● Note: Often easier to minimize -ℒ
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3) Maximum 
Likelihood Ratio Test

● To determine the significance of your 
model M

1
, you must define a null 

hypothesis M
0
 to compare to

● Separately maximize the likelihood of M
0
 

and M
1
 with respect to their parameters p

● The ratio of ℒ
max,1

/ℒ
max,0

 is used to 

determine the significance of M
1
 over M

0
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Test Statistic

● Likelihood ratio test uses a test statistic 
TS to determine significance:

● Note: TS
max

≠2ln(ℒ
max,1

)-2ln(ℒ
max,0

)

– Need to maximize each separately

TS=2ln(ℒmax ,1)−2ln(ℒmax ,0)
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Nested Models

● If model M
0
 is identical to  with some of 

its parameters set to fixed values, then 
these models are “nested”

● For nested models M
0
 with ν

0
 free 

parameters and M
1
 with ν

1
 free 

parameters, and a large number of 
counts, TS follows a χ2-distribution with 
(ν

1
-ν

0
) degrees of freedom (Wilks' Thm)
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Nested Models 
Examples
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The χ2-Distribution

● The χ2-distribution with ν degrees of 
freedom has the pdf:

● The cumulative distribution function is:

ƒ (x ; ν)=
x ν/2−1e−x /2

2ν/2
Γ(ν/2)

ν
ν

ν
ν
ν
ν
ν
ν
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The χ2-Distribution

● The χ2-distribution with ν degrees of 
freedom has the pdf:

● The cumulative distribution function is:

ƒ (x ; ν)=
x ν/2−1e−x /2

2ν/2
Γ(ν/2)

ν
ν

ν
ν
ν
ν
ν
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Confidence Intervals
● Q: Why are 1-σ at 68% and 2-σ at 95%?
● A: Because we like Gaussian p-values.

– For a Gaussian of width σ peaked at x=μ,
● 68.27% of the curve lies within -σ ≤ x-μ ≤ σ
● 95.45% of the curve lies within -2σ ≤ x-μ ≤ 2σ
● erf(q/√2) of the curve lies within -qσ ≤ x-μ ≤ qσ
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χ2 Confidence Intervals
● For a TS which follows the χ2-distribution with ν 

degrees of freedom, the corresponding 
confidence level and significance are:

● For error bars on a parameters p, find the 
parameter values p* for which          
ΔTS=TS

max
-TS(p*)=this value

C.L. σ d.o.f.=1 d.o.f.=2 d.o.f.=3 d.o.f.=4 d.o.f.=5 d.o.f.=6

68.27% 1 1.00 2.30 3.53 4.72 5.89 7.04

95.45% 2 4.00 6.17 8.02 9.70 11.3 12.8

99.73% 3 9.00 11.8 14.2 16.3 18.2 20.1

99.994% 4 16.0 19.3 22.1 24.5 26.8 28.9

99.99994% 5 25.0 28.7 31.8 34.6 37.1 39.5
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Confidence Intervals 
and Likelihood

Note: Beware 1-
sided vs 2-sided 
confidence intervals
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4a) Trials Factors

● If you observe 400 random points in space 
and see one at 3-σ (99.73% CL), should you 
get excited?

– No, you'd expect ~1 3-σ background 
fluctuation for each ~370 points 
(0.27/100*370=1)

● The mathematical way to account for this is 
a “trials factor” which reduces the 
significance based on the probability of the 
fluctuation coming from background when 
you try multiple points at random
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When You Need a 
Trials Factor

● You need a trials factor if you are:

– doing an unbiased search of multiple 
locations looking for any sources

– looking at a single source location with 
multiple spectral assumptions

– looking at a single source but letting the 
location float

● If you are looking for a source with a fixed, 
known location and spectrum (e.g. the Crab), 
then you do not need trials. That's about it.
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How Trials Hurt 
Significance

Z
t 

=
 P

re
 t

ri
al

s 
si

g
n

if
ic

an
ce

● Small effect if large 
significance, small 
number of trials

● Z1-Z5 are a “post-trials 
significance” of 1-5

● Note: Definition based 
on Bonferonni Method

Figure courtesy of J. 
Linnemann
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17 colors 
later...

xkcd.com/882

2�
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4b) Uncertainty in   
the Background

● So far, we have assumed that the background 
is perfectly measured and has no uncertainty

● In truth, we get our background from data, and 
data has uncertainties

– Lots of time spent looking at nothingto 
quantify backgrounds

● Example: the background N
B
 is oversampled, 

from a large data set N
off

 of size N
B
=αN

off
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Li & Ma Single-bin 
Analysis

● Li & Ma (1983) treats the single-bin 
version of an uncertain background in 
the case of large number of statistics

● In that case, the significance is:

● Used in many particle and astrophysics 
calculations

● Available at adsabs.harvard.edu/full/1983ApJ...272..317L

σ=√2{Non ln [1+α
α (

Non

Non+Noff
)]+Noff ln [(1+α)(

Noff

Non+Noff
)]}

1 /2



J. Patrick Harding 39

Including Uncertainty 
in the Background

● To completely include uncertainty in the 
background, you need to include a model of your 
full oversampled background in the calculation

● For a true number of background events b, we 
need to know not just the probability of observing 
at least N

on
 events given αb but also know the 

probability of the unknown quantity b given our 
measured number of total background events N

off
 

(Alexandreas et al 1993)

or an equivalent analytic expression therein

P (≥Non ;α ,Noff )= ∑
non=Non

∞

∫
b=0

∞

db P(Noff ; b)P(non ;αb)
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4c) Tools for 
Maximizing Likelihood

● Analytic
● Grid
● Minuit
● Markov-Chain Monte Carlo
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Analytic Maximization
● Calculus for the win!

● Solving ∂ℒ/∂p=0 (or ∇
p
ℒ=0) analytically 

makes the maximization quick

– Sometimes, you can maximize w.r.t. p
1
 

analytically but need to do p
2
 numerically

– Sometimes, you need to re-parameterize in 
terms of p

1
'=ƒ(p

1
,p

2
) to analytically do it

● Warning:                                                  
does not mean

∂
∂ p∑k

ln(Pk (p))=∑k

∂
∂ p

ln(Pk (p))=0

∂
∂ p

ln(Pk (p))=0
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Grid Search

● Try a few sample points in each 
parameter to find the set of parameters 
with the maximum likelihood

● Can be computationally very expensive
– For 3 parameters, 100 sample points each 

you need to calculate the likelihood 
1,000,000 times

● If parameter space has peaks and 
valleys, easy to miss global maximum
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Minuit

● Fitting tool available in ROOT software
● Typically use MIGRAD routine

– Uses derivatives to find its way through 
parameter space to maximum likelihood

● Can be fast, even for a few parameters
● Still need to be careful about peaks and 

valleys in parameter space giving you 
false best-fits
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Markov-Chain
Monte Carlo (MCMC)

● One useful method to get the full distribution of 
TS (or anything) for a model is MCMC

● You basically wander around in parameter space 
from regions of lower probability to regions of 
higher probability, stopping when you find the 
maximum

● Using the Metropolis-Hastings algorithm, you don't 
always move to the higher-probability point

– You stay where you are sometime, based on the 
ratio of P(your location)/P(new location)

● Doing this, you map out the full probability space 
while simultaneously finding the maximum
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For More Info

● Particle Data Group Statistics and 
Probability
– pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf

● Last Year's Lecture (by Liz Hayes)
– confluence.slac.stanford.edu/display/LSP/Fermi+Su

mmer+School+2017


