Probability, Statistics, and Maximum Likelihood
Fermi Summer School
j. Patrick Harding
Los Alamos National Laboratory
29 May 2018

Overview

NATIONAL LABORATORY

1) Statistics and Probability
2) Likelihood Analysis
3) Maximum Likelihood Ratio Test
4) Advanced Likelihood Topics

- Trials Factors
- Uncertainty in Background Measurement
- Tools for Maximizing Likelihood

1) Statistics

Notation:

- $P(x ; p)$ is probability of measuring x given inputs p
- Probability Density Function (pdf) $f(x ; p)$
- $d P(x ; p)=f(x ; p) d x$ is differential probability for continuous variables x given inputs p
- Cumulative distribution function (cdf)

$$
F(x ; p)=\int_{-\infty}^{x} f(x ; p) d x
$$

What do you need to

 calculate parametervalues and uncertainties?
1)Statistical distribution of the data
2)Pick your statistical framework
1)Bayesian or Frequentist?
3)Calculate
1)Parameter value
2)Confidence Interval
3)Significance of the parameter

What do you need to

 calculate parameter values and uncertainties?1)Statistical distribution of the data
2)Pick your statistical framework
1)Bayesian or Frequentist?
3)Calculate
1)Parameter value
2)Confidence Interval
3)Significance of the parameter

Poisson Distribution

- "Counting Statistics"
- Measured discrete variable n with expected value m

- For large numbers m and n, approximates to a Gaussian (via Sterling's approximation)

Gaussian Distribution

- Measured continuous variable x with expected value μ and width σ
- pdf $f(x ; \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right]$ No Tail
- Mean μ
- Standard Deviation σ

Width independent of mean

What do you need to

 calculate parametervalues and uncertainties?
1)Statistical distribution of the data
2)Pick your statistical framework
1)Bayesian or Frequentist?
3)Calculate
1)Parameter value
2)Confidence Interval
3)Significance of the parameter

Confidence Intervals LosAlamos

- Bayesian

1) Assumes answer follows a distribution
2) Assume a "prior distribution" based on preexisting knowledge/prejudice
3) Take some data
4) Update prior distribution to "posterior distribution" based on data
5) Get confidence interval from posterior distribution
6) Is fraction of time distribution is in interval

- Answer depends on your initial prior

Confidence Intervals LosAlamos

- Frequentist

1) Assumes there is a single correct answer but that sampled size is finite
2) Take some data
3) Assume data is representative of the full distribution
4) Get confidence interval from data distribution
5) Is fraction of time a random data point lies in that interval

- Prior knowledge goes into model interpretation of confidence interval

Bayesian vs. Frequentist

- Bayesian
- Answer is the distribution of true values
- Confidence interval is a range in the distribution
- Depends on prior knowledge
- Frequentist
- Answer is a guess at the "right value"
- Confidence interval is how likely you are to guess the right value is in that interval once you've taken data

Bayesian vs. Frequentist

Frequentist

Max of the distribution

Guess at right answer

Width of the distribution

Range the right answer may be in

Bayesia

Max of th distributic

NATIONAL LABORATORY

zquentist

less at right answer

FREQUENTIST STATISTICIAN:
BAYESIAN STATISTICIAN:

What do you need to

 calculate parametervalues and uncertainties?
1)Statistical distribution of the data
2)Pick your statistical framework
1)Bayesian or Frequentist?
3)Calculate
1)Parameter value
2)Confidence Interval
3)Significance of the parameter

Significance and "p-values"

- Statistical significance is a measure of how well the null result can reproduce the data
- The p-value says how probable it is that the data is due to background fluctuations:
- $p \sim 1$ is likely to be from background
- $p \sim 0$ is likely not due to background
- value itself depends on the underlying null model assumed (examples later)
- Significance (σ) is often interpreted as the number of standard deviations in the background which would be necessary to reproduce the data

2) Likelihood Analysis OिsAlamos

- We are going to use a pseudo-Bayesian analysis for this discussion
- Using methods of a Bayesian analysis, but without using priors
- Prior knowledge goes into our model instead of our statistics
- Interpreting results as a Frequentist
- e.g. - What is our PSF?
- e.g. - What is the flux from the Crab?

Source Model

- Model includes everything you know (or wish to know) about a source
- Known parameters and free parameters are both included
- Qualitative behavior is assumed from prior knowledge
- PSF is Gaussian (or double-Gaussian)
- Extended source vs point source
- Steady in time vs decaying signal in time - ..

Your Significance is Only as Good as Your Model

Example:

(Significances assuming one free parameter)

Model 2: 4.05 σ

Model 3: 4.06 σ

Likelihood

Altitude Water Cherenkoy
Gamma-Ray Observatory

- Likelihood \mathcal{L} is the product of the probabilities of each bin
- For Poisson probabilities:

$$
\begin{gathered}
\mathcal{L}=\prod_{k} P_{k}=\prod_{k} \frac{m_{k}^{n_{k}} e^{-m_{k}}}{n_{k}!} \\
\ln (\mathcal{L})=\sum_{k} \ln \left(P_{k}\right)=\sum_{k} n_{k} \ln \left(m_{k}\right)-m_{k}-\ln \left(n_{k}!\right)
\end{gathered}
$$

- Likelihood by itself does not tell you any information about the goodness/badness of your model fit to the data
- Note: the n ! term does not affect the outcome of the significance calculations (as we will see)

Binned vs Unbinned Analysis

Unbinned

- Loop over each event
- Don't lose information
- Makes the most out of each piece of data
- For large data sets, is computationally cumbersome
- Doesn't necessarily gain much information

Binned

- If too much data is cumbersome, we combine it into bins
- Bins can be in anything:
- Time
- Space/solid angle
- Energy
- Reconstruction quality
- ...

Maximizing Likelihood tosAlamos

- Your model M has parameters p
- For any set of parameters p^{*}, this model gives a prediction for each bin, m_{k}
- Given your measured bin data $\mathrm{n}_{\mathrm{k}^{\prime}}$ find the set of parameters p that gives the model that maximizes $\mathcal{L}($ or $\ln \mathcal{L})$
- Can use fitting techniques (discussed later) to find $\mathcal{L}_{\text {max }}$
- Note: Often easier to minimize - \mathcal{L}

3) Maximum

 Likelihood Ratio Test- To determine the significance of your model M_{1}, you must define a null hypothesis M_{0} to compare to
- Separately maximize the likelihood of M_{0} and M_{1} with respect to their parameters p
- The ratio of $\mathcal{L}_{\text {max }, 1} / \mathcal{L}_{\text {max }, 0}$ is used to determine the significance of M_{1} over M_{0}

Test Statistic

NATIONAL LABORATORY
Altitude Water Cherenko
Gamma-Ray Observatory

- Likelihood ratio test uses a test statistic TS to determine significance:

$$
T S=2 \ln \left(\mathcal{L}_{\max , 1}\right)-2 \ln \left(\mathcal{L}_{\max , 0}\right)
$$

- Note: $\mathrm{TS}_{\max } \neq 2 \ln \left(\mathcal{L}_{\text {max }, 1}\right)-2 \ln \left(\mathcal{L}_{\text {max }, 0}\right)$
- Need to maximize each separately

Nested Models

- If model M_{0} is identical to with some of its parameters set to fixed values, then these models are "nested"
- For nested models M_{0} with ν_{0} free parameters and M_{1} with ν_{1} free parameters, and a large number of counts, $T S$ follows a χ^{2}-distribution with $\left(\nu_{1}-\nu_{0}\right)$ degrees of freedom (Wilks' Thm)

Nested Models Examples

Linear $\mathrm{y}=\mathrm{m}^{*} \mathrm{x}+\mathrm{b}$

Exponential Linear $y=m^{*} x^{*} \exp \left(c^{*} x\right)+b$

Quadratic $y=a * x^{2}+m * x+b$

The χ^{2}-Distribution

NATIONAL LABORATORY

- The χ^{2}-distribution with v degrees of freedom has the pdf:

$$
f(x ; v)=\frac{x^{v / 2-1} e^{-x / 2}}{2^{v / 2} \Gamma(v / 2)}
$$

- The cumulative distribution function is:

The χ^{2}-Distribution

- The χ^{2}-distribution with v degrees of freedom has the pdf:

$$
f(x ; v)=\frac{x^{v / 2-1} e^{-x / 2}}{2^{v / 2} \Gamma(v / 2)}
$$

- The cumulative distribution function is:

J. Patrick Harding

The χ^{2}-Distribution

- The χ^{2}-distribution with v degrees of freedom has the pdf:

$$
f(x ; v)=\frac{x^{v / 2-1} e^{-x / 2}}{2^{v / 2} \Gamma(v / 2)}
$$

- The cumulative distribution function is:

J. Patrick Harding

Confidence Intervals are $1-\sigma$ at 68% and $2-\sigma$ at 95% ?

- A: Because we like Gaussian p-values.
- For a Gaussian of width σ peaked at $x=\mu$,
- 68.27% of the curve lies within $-\sigma \leq x-\mu \leq \sigma$
- 95.45% of the curve lies within $-2 \sigma \leq x-\mu \leq 2 \sigma$
- $\operatorname{erf}(\mathrm{q} / \sqrt{2})$ of the curve lies within $-\mathrm{q} \sigma \leq x-\mu \leq \mathrm{q} \sigma$

J. Patrick Harding

HAWC X^{2}
 Confidence Intervals ${ }^{\text {Cosalamos }}$ Gamma-Ray Observatory

- For a TS which follows the χ^{2}-distribution with v degrees of freedom, the corresponding confidence level and significance are:

C.L.	σ	d.o.f. $=1$	d.o.f. $=2$	d.o.f. $=3$	d.o.f. $=4$	d.o.f. $=5$	d.o.f. $=6$
68.27%	1	1.00	2.30	3.53	4.72	5.89	7.04
95.45%	2	4.00	6.17	8.02	9.70	11.3	12.8
99.73%	3	9.00	11.8	14.2	16.3	18.2	20.1
99.994%	4	16.0	19.3	22.1	24.5	26.8	28.9
99.99994%	5	25.0	28.7	31.8	34.6	37.1	39.5

- For error bars on a parameters p, find the parameter values p^{*} for which $\Delta T S=T S_{\max }-T S\left(p^{*}\right)=$ this value

Note: Beware 1sided vs 2-sided confidence intervals

Confidence Intervals

Significance (or TS)

4a) Trials Factors

- If you observe 400 random points in space and see one at 3-б (99.73\% CL), should you get excited?
- No, you'd expect ~1 3-б background fluctuation for each ~ 370 points (0.27/100*370=1)
- The mathematical way to account for this is a "trials factor" which reduces the significance based on the probability of the fluctuation coming from background when you try multiple points at random

When You Need a Trials Factor

- You need a trials factor if you are:
- doing an unbiased search of multiple locations looking for any sources
- looking at a single source location with multiple spectral assumptions
- looking at a single source but letting the location float
- If you are looking for a source with a fixed, known location and spectrum (e.g. the Crab), then you do not need trials. That's about it.

How Trials Hurt Significance

- Small effect if large significance, small number of trials
- Z1-Z5 are a "post-trials significance" of 1-5
- Note: Definition based on Bonferonni Method

Figure courtesy of J. Linnemann

xkcd.com/882

17 colors later...

4b) Uncertainty in the Background

NATIONAL LABORATORY

- So far, we have assumed that the background is perfectly measured and has no uncertainty
- In truth, we get our background from data, and data has uncertainties
- Lots of time spent looking at nothingto quantify backgrounds
- Example: the background N_{B} is oversampled, from a large data set $N_{\text {off }}$ of size $N_{B}=\alpha N_{\text {off }}$

Li \& Ma Single-bin Analysis

- Li \& Ma (1983) treats the single-bin version of an uncertain background in the case of large number of statistics
- In that case, the significance is:

$$
\sigma=\sqrt{2}\left(N_{\text {on }} \ln \left[\frac{1+\alpha}{\alpha}\left(\frac{N_{\text {on }}}{N_{\text {on }}+N_{\text {off }}}\right)\right]+N_{\text {off }} \ln \left[(1+\alpha)\left(\frac{N_{\text {off }}}{N_{\text {on }}+N_{\text {off }}}\right)\right]\right\}^{1 / 2}
$$

- Used in many particle and astrophysics calculations
- Available at adsabs.harvard.edu/full/1983ApJ...272..317L

Including Uncertainty GosAlamos in the Background

- To completely include uncertainty in the background, you need to include a model of your full oversampled background in the calculation
- For a true number of background events b, we need to know not just the probability of observing at least $\mathrm{N}_{\text {on }}$ events given α b but also know the probability of the unknown quantity b given our measured number of total background events N off (Alexandreas et al 1993)

$$
P\left(\geq N_{\text {on }} ; \alpha, N_{\text {off }}\right)=\sum_{n_{o n}=N_{o n}}^{\infty} \int_{b=0}^{\infty} d b P\left(N_{\text {off }} ; b\right) P\left(n_{o n} ; \alpha b\right)
$$

or an equivalent analytic expression therein

4c) Tools for Maximizing Likelihood
 4c) Tools for Maximizing Likelihood
 \square EST. 1943 ———

Gamma-Ray Observatory

- Analytic
- Grid
- Minuit
- Markov-Chain Monte Carlo

Analytic Maximization O. Aamoms

$\frac{\text { High Altitude Water Cherenkov }}{\text { C }}$

- Calculus for the win!
- Solving $\partial \mathcal{L} / \partial p=0$ (or $\nabla_{p} \mathcal{L}=0$) analytically makes the maximization quick
- Sometimes, you can maximize w.r.t. p_{1} analytically but need to do p_{2} numerically
- Sometimes, you need to re-parameterize in terms of $\mathrm{p}_{1}{ }^{\prime}=f\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)$ to analytically do it
- Warning: $\frac{\partial}{\partial p} \sum_{k} \ln \left(P_{k}(p)\right)=\sum_{k} \frac{\partial}{\partial p} \ln \left(P_{k}(p)\right)=0$ does not mean $\frac{\partial}{\partial p} \ln \left(P_{k}(p)\right)=0$

Grid Search

NATIONAL LABORATORY

- Try a few sample points in each parameter to find the set of parameters with the maximum likelihood
- Can be computationally very expensive
- For 3 parameters, 100 sample points each you need to calculate the likelihood 1,000,000 times
- If parameter space has peaks and valleys, easy to miss global maximum

Minuit

- Fitting tool available in ROOT software
- Typically use MIGRAD routine
- Uses derivatives to find its way through parameter space to maximum likelihood
- Can be fast, even for a few parameters
- Still need to be careful about peaks and valleys in parameter space giving you false best-fits

Markov-Chain Monte Carlo (MCMC)

gh Altitude Water Cherenko
Gamma-Ray Observatory

- One useful method to get the full distribution of TS (or anything) for a model is MCMC
- You basically wander around in parameter space from regions of lower probability to regions of higher probability, stopping when you find the maximum
- Using the Metropolis-Hastings algorithm, you don't always move to the higher-probability point
- You stay where you are sometime, based on the ratio of P (your location)/P(new location)
- Doing this, you map out the full probability space while simultaneously finding the maximum

For More Info

- Particle Data Group Statistics and Probability
- pdg.lbl.gov/2015/reviews/rpp2015-rev-statistics.pdf
- Last Year's Lecture (by Liz Hayes)
- confluence.slac.stanford.edu/display/LSP/Fermi+Su mmer+School+2017

