

Air Showers and HAWC

Pat Harding Los Alamos National Laboratory

5 June 2018

Cosmic Rays Discovery

 Physikalische Zeitschrift: "The results of these observations seem best explained by a radiation of great penetrating power entering our atmosphere from above."

Elevation	Rate
Ground	12
1km	10
2 km	12
3.5 km	15
5 km	27

V. F. Hess. Über Beobachtungen der durchdringenden Strahlung bei sieben Freiballonfahrten. Physikalische Zeitschrift, 13:1084-1091, November 1912.

Cosmic Rays

- The flux charged cosmic rays follows nearly a single power law over:
 - 10 decades in energy
 - . 30 decades in flux
- Single particles have been observed with energies above 10²⁰eV!
- There are several "kinks" in the spectrum where the exponent changes, steepening at the "knee" and flattening at the "ankle".
- The source of the high-energy cosmic rays remains elusive.

Candidate Accelerators

B=2T r=1.5x10¹¹m p=10¹¹ GeV/c =10²⁰ eV/c

Sources of the Highest-Energy Cosmic Rays and Gamma Rays

The Most Violent Processes in the Universe

Jets from the Cygnus A Supermassive Black Hole

Processes that Make TeV Gamma Rays

Gamma-Ray Attenuation

- Gamma rays can interact with photons from the IR background or CMB to produce electron-positron pairs
- For extragalactic gamma rays, this sets a horizon beyond which we cannot observe sources
- The optical depth τ increases with increasing gamma-ray energy and increasing distance
- By observing this cutoff in source spectra, we can determine the nature of the extragalactic background light

Techniques for Gamma-Ray Detection

Atmospheric Cherenkov Telescope Array (HESS, MAGIC, VERITAS, CTA..) Detect Cherenkov light from air-shower particles as the traverse the atmosphere.

Gamma Rays with Satellites

- Direct detection of particles in space
- Good sensitivity
 - Large field-of-view
- Small (~1 m²)
 - Rare TeV photons will not hit in large quantity

Gamma Rays with Satellites

Too small to see many TeV gammas Need groundbased experiments

- Direct detection
- Good sensitivi
 - Large field-of-
- Small (~1 m²)
 - Rare TeV photons will not hit in large quantity

Air Showers

The second s

Corsika simulation of the shower from a 100 TeV proton

Gamma Ray Energy Loss Mechanisms

Fig. 2: Photon cross-section σ in lead as a function of photon energy. The intensity of photons can be expressed as $I = I_0 \exp(-\sigma x)$, where x is the path length in radiation lengths. (Review of Particle Properties, April 1980 edition).

Imaging Air Cherenkov Telescopes

- Observe the Cherenkov radiation from charged air shower particles traveling through the atmosphere
- Properties:
 - Effective area: ~10⁵ m² \checkmark
 - Energy resolution: ~15% √√
 - Angular Resolution: ~0.1° ✓
 - − Field-of-view: ~ ~2° 5° X
 - Duty cycle: ~ ~10% X
- Excellent for pointed observations
- . Not survey instruments

Extensive Air Shower (EAS) Arrays

- Observe the Cherenkov radiation from charged air shower particles traveling through water (or scintillator) at ground level
- . Properties:
 - Effective area: ~ $10^4 10^5 \text{ m}^2 \checkmark$
 - Energy resolution: ~30 100% X
 - Angular Resolution: ~0.1°-1° ✓
 - Field-of-view: ~ ~2 sr
 instantaneous (2/3 sky each day) √
 - Duty cycle: ~ ~100% ✓
- Excellent survey instruments

EAS Arrays - Science

- EAS Arrays are Survey Instruments
- . Key niches:
 - Transients
 - New sources
 - Hard spectrum sources
 - Source spectrum cutoffs
 - Extended sources

TeV Observatories

Extensive Air Shower Array Observatories Imaging Air Cherenkov Telescopes

Extensive Air Shower Development

Get Thee to High Altitude!

- The higher altitude the EAS array is, the more air shower particles are observed
 - At low energy, observations are limited by the number of particles observed
 - Higher altitude means sensitivity to lower energy primaries
 - Below shower maximum, many of the lowest-energy shower particles have "ranged out" and stopped propagating

•

Shower Lateral Distribution Function (LDF)

Lateral shower profile:

- The lateral shower profile is dominated by two processes:
 - multiple Coulomb scattering
 - relatively long free path length of low energy photons
- It is characterized by the so-called Molière radius ρ_{M}

 $\rho_M = \frac{21 \text{MeV}}{E_C} X_0 \approx 7 \frac{A}{Z} \left[\frac{g}{cm^2} \right]$

- About 95% of the shower energy are contained within a cylinder with radius r = 2 ρ_{M}

in general well collimated !

Example: $E_0 = 100 \text{ GeV}$ in lead glass $E_i = 11.8 \text{ MeV} \rightarrow t_{max} \approx 13, \ t_{95\%} \approx 23$ $X_0 \approx 2 \text{ cm}, \ R_M = 1.8 \cdot X_0 \approx 3.6 \text{ cm}$

100 TeV Proton

J.Oehlschlaeger, R.Engel, FZKarlsruhe

High Altitude Water Cherenkov Observatory

Altitude: 4100 m (13000 ft) Latitude: 19° N

HAWC Location

Water Cherenkov Detectors

Direction

• As the shower sweeps across the WCDs, we can reconstruct the direction it's sweeping from

Energy

- The light level is each PMT and its LDF correlates with energy
- More PMTs hit, more light in PMTs \rightarrow higher energy

Particle Type

HAWC Resolution

HAWC Efficiency

Los Alamos National Laboratory

HAWC Sensitivity

Observable HAWC Sky

Astrophysical Coordinate Systems

Galactic Coordinates (I,b)

Equatorial Coordinates (RA,dec)

The Science of HAWC

