



# Intro to the Fermi-LAT

Regina Caputo UMD/NASA/GSFC Fermi Summer School Lewes, DE

May 30, 2018



#### Gamma-ray Space Telescope



- Introduction: What is the Large Area Telescope?
  - Optimizing for science
- Instrument Response Functions (IRFs)
  - effective area
  - point spread function
  - energy dispersion
- Validating and Calibrating IRFs
- Assessing Systematics on IRFs
- Source Sensitivity

#### Please refer to:

The Fermi Large Area Telescope On Orbit: Event Classification,Instrument Response Functions, and Calibration (or How I Learned to Stop Worrying and Love the Instrument) Fermi-LAT Collaboration, 2012 ApJS, 203, 4 arXiv:1206.1896 And previous summer schools :)



#### **Exploring the Extreme Universe**



Supernova Remnants



Active Galactic Nuclei



#### Catalogs



Dark Matter

R. Caputo |



Pulsars



Terrestrial Gamma-ray Flashes







Gamma-ray Bursts

About Fermi

Click on the images or topic name for information about these science topics.



**Pulsar Wind Nebulae** 

Extragalactic Background







#### **A Broad Range of Fermi-LAT Science**





Develop event classes and event types specialized for each type of science

Getting to know you... what do you study?

R. Caputo | UMD/NASA/GSFC



























Sermi



### **Particle Backgrounds**





#### Backgrounds:

protons (green filled triangles up), He (purple filled triangles up), electrons (filled red squares), positrons (light blue squares), Earth albedo neutrons (black squares), Earth albedo  $\gamma$ -rays (dark blue triangles dn).

#### Background to signal: 1000:1

http://arxiv.org/pdf/0902.1089v1.pdf





Sermi



# The Fermi-LAT



Dermi

Gamma-ray Space Telescope



#### **The Fermi-LAT** Modular design, 3 subsystems

**Tracker** Silicon detectors Convert  $\gamma$  to e<sup>+/-</sup>

Dermi

Gamma-ray Space Telescope

Reconstruct  $\gamma$  direction







#### **The Fermi-LAT** Modular design, 3 subsystems

**Tracker** Silicon detectors Convert  $\gamma$  to e<sup>+/-</sup> Reconstruct  $\gamma$  direction

Dermi

Gamma-ray Space Telescope



Calorimeter CsI scintillating crystal logs Measure energy of γ and e<sup>+/-</sup> Image and separate EM/had. showers





# The Fermi-LAT

Modular design, 3 subsystems

TrackerSilicon detectorsConvert  $\gamma$  to e+/-Reconstruct  $\gamma$  direction

Anti-Coincidence Detector Scintillating tiles Charged particle separation

**Calorimeter** CsI scintillating crystal logs Measure energy of γ and e<sup>+/-</sup> Image and separate EM/had. showers





#### **The Fermi-LAT** Modular design, 3 subsystems

**Tracker** Silicon detectors Convert  $\gamma$  to e<sup>+/-</sup> Reconstruct  $\gamma$  direction

**Trigger** rate: ~10 kHz read out: ~400 Hz Anti-Coincidence Detector Scintillating tiles Charged particle separation

**Calorimeter** CsI scintillating crystal logs Measure energy of γ and e<sup>+/-</sup> Image and separate EM/had. showers





#### The Fermi-LAT Modular design, 3 subsystems

Tracker Silicon detectors Convert  $\gamma$  to e<sup>+/-</sup> Reconstruct  $\gamma$  direction

Trigger rate: ~10 kHz **Anti-Coincidence Detector** Scintillating tiles Charged particle separation

Calorimeter CsI scintillating crystal logs Measure energy of  $\gamma$  and e<sup>+/-</sup> Image and separate EM/had. showers

read out: ~400 Hz

 $\gamma$ -ray data made public within 24 hours





#### **The Fermi-LAT** Modular design, 3 subsystems

**Tracker** Silicon detectors Convert  $\gamma$  to e<sup>+/-</sup>

Reconstruct  $\gamma$  direction



Anti-Coincidence Detector Scintillating tiles Charged particle separation

#### **Calorimeter** CsI scintillating crystal logs Measure energy of γ and e<sup>+/-</sup> Image and separate EM/had. showers

# Trigger

rate: ~10 kHz read out: ~400 Hz

#### LAT Detector discussion continues tomorrow...



 $\gamma$ -ray data made public within 24 hours



### **Fermi-LAT Instrument Capabilities**



| Parameter                                | Value or Range                                                                                                                          |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Energy Range                             | ~20 MeV to >300 GeV                                                                                                                     |  |  |  |
| Energy Resolution                        | <15% at energies >100 MeV                                                                                                               |  |  |  |
| Effective Area                           | >8,000 cm <sup>2</sup> maximum effective area at normal incidence                                                                       |  |  |  |
| Single Photon Angular<br>Resolution      | <0.15°, on-axis, 68% space angle containment radius for E > 10 GeV; < 3.5°, on-axis, 68% space angle containment radius for E = 100 MeV |  |  |  |
| Field of View                            | 2.4 sr                                                                                                                                  |  |  |  |
| Source Location<br>Determination         | <0.5 arcmin for high-latitude source                                                                                                    |  |  |  |
| Point Source Sensitivity                 | <6x10 <sup>-9</sup> ph cm <sup>-2</sup> s <sup>-1</sup> for E > 100 MeV, 5σ detection after 1 year sky survey                           |  |  |  |
| Time Accuracy                            | <10 microseconds, relative to spacecraft time                                                                                           |  |  |  |
| Background Rejection<br>(after analysis) | <10% residual contamination of a high latitude diffuse sample for E = 100 MeV - 300 GeV.                                                |  |  |  |
| Dead Time                                | <100 microseconds per event                                                                                                             |  |  |  |



#### https://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT\_essentials.html

| Standard Hierarchy for LAT Event Classes |         |                |               |                                                                                                                                                                                                                                                                                                                                          |  |  |
|------------------------------------------|---------|----------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Event Class                              | evclass | Photon<br>File | Extended File | Description                                                                                                                                                                                                                                                                                                                              |  |  |
| P8R2_TRANSIENT020                        | 16      |                | x             | Transient event class with background rate equal to two times the A10 IGRB reference spectrum.                                                                                                                                                                                                                                           |  |  |
| P8R2_TRANSIENT010                        | 64      |                | X             | Transient event class with background rate equal to<br>one times the A10 IGRB reference spectrum.                                                                                                                                                                                                                                        |  |  |
| P8R2_SOURCE                              | 128     | x              | X             | This event class has a residual background rate that is<br>comparable to P7REP_SOURCE. This is the<br>recommended class for most analyses and provides<br>good sensitivity for analysis of point sources and<br>moderately extended sources.                                                                                             |  |  |
| P8R2_CLEAN                               | 256     | x              | X             | This class is identical to SOURCE below 3 GeV.<br>Above 3 GeV it has a 2-4 times lower background rate<br>than SOURCE and is slightly more sensitive to hard<br>spectrum sources at high galactic latitudes.                                                                                                                             |  |  |
| P8R2_ULTRACLEAN                          | 512     | x              | x             | This class has a background rate between CLEAN and ULTRACLEANVETO.                                                                                                                                                                                                                                                                       |  |  |
| P8R2_ULTRACLEANVETO                      | 1024    | x              | X             | This is the cleanest Pass 8 event class. Between 100<br>MeV and 10 GeV the background rate is between 2<br>and 4 times lower than the background rate of<br>SOURCE class. This class is recommended to check<br>for CR-induced systematics as well as for studies of<br>diffuse emission that require low levels of CR<br>contamination. |  |  |

#### +a few more transient classes...

Derm.I.

Gamma-ray Space Telescope

Fermi Summer School 2018





| Conversion Type Partition        |        |                                                                                  |  |  |  |  |
|----------------------------------|--------|----------------------------------------------------------------------------------|--|--|--|--|
| Event Type                       | evtype | Description                                                                      |  |  |  |  |
| FRONT                            | 1      | Events converting in the Front-section of the Tracker. Equivalent to convtype=0. |  |  |  |  |
| BACK                             | 2      | Events converting in the Back-section of the Tracker. Equivalent to convtype=1.  |  |  |  |  |
| PSF Type Partition               |        |                                                                                  |  |  |  |  |
| Event Type                       | evtype | Description                                                                      |  |  |  |  |
| PSF0                             | 4      | First (worst) quartile in the quality of the reconstructed direction.            |  |  |  |  |
| PSF1                             | 8      | Second quartile in the quality of the reconstructed direction.                   |  |  |  |  |
| PSF2                             | 16     | Third quartile in the quality of the reconstructed direction.                    |  |  |  |  |
| PSF3                             | 32     | Fourth (best) quartile in the quality of the reconstructed direct Check out the  |  |  |  |  |
| EDISP Type Partition FSSC for mo |        |                                                                                  |  |  |  |  |
| Event Type                       | evtype | Description                                                                      |  |  |  |  |
| EDISP0                           | 64     | First (worst) quartile in the quality of the reconstructed energy.               |  |  |  |  |
| EDISP1                           | 128    | Second quartile in the quality of the reconstructed energy.                      |  |  |  |  |
| EDISP2                           | 256    | Third quartile in the quality of the reconstructed energy.                       |  |  |  |  |
| EDISP3                           | 512    | Fourth (best) quartile in the quality of the reconstructed energy.               |  |  |  |  |

# Which Event Classes/Types have you worked with so far?





### **Instrument Response Functions (IRFs)**

#### https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/ Cicerone/Cicerone\_LAT\_IRFs/IRF\_overview.html

#### LAT Coordinate System





# Instrument Response Functions (IRFs) parameterized as a function of the E and $(\theta, \phi)$ in instrument coordinates

R. Caputo | UMD/NASA/GSFC

Dermi

Gamma-ray Space Telescope

Fermi Summer School 2018







- The IRF is factored into three terms:
  - efficiency in terms of the detector's effective area,
  - angular resolution as given by the point-spread function (PSF),
  - energy resolution given by the energy dispersion



# **Effective Area**



- A<sub>eff</sub>(E,v, s): product of the geometrical collection area, gamma-ray conversion probability and selection efficiency for a gamma-ray with energy E and direction v in the LAT frame
- Generating A<sub>eff</sub> tables
  - generate isotropic incoming flus, count events that pass event selection, normalize to input flux
- Events binned in log(E) and  $\cos \theta$ 
  - ScienceTools takes care of interpolations
  - φ dependence small, treated as correction

Gamma-ray

### **Effective Area**





- $A_{eff}$  vs E (at fixed  $\theta$ )
  - Increases up to 1 TeV
  - >1 TeV events are harder to reconstruct and event rates drop

P8R2\_SOURCE\_V6 effective area at 10 GeV, averaged over \$\phi\$



- $A_{eff}$  vs  $\theta$  (at fixed E)
  - Less cross section as you go off-axis
  - Off-axis events easier for backconverting events to intercept the calorimeter

See: <u>http://www.slac.stanford.edu/exp/glast/groups/canda/lat\_Performance.htm</u>

#### What happens at low energies? Fermi Summer School 2018

erm

Gamma-ray Space Telescope











• Acceptance A(E)



P8R2\_SOURCE\_V6 on-axis effective area Effective area (m²) Front Back 0.8 Total 0.7 0.6 0.5 0.4 0.3 0.2 0.1 10<sup>2</sup> 10<sup>3</sup> <sup>10<sup>5</sup></sup>Energy (MeV) 10<sup>4</sup> 10

- Field-of-view
  - FoV(E) =  $A(E)/A_{eff}(\theta=0)$
  - Fermi-LAT: 2.4 sr (>1 GeV)

R. Caputo | UMD/NASA/GSFC

Dermi

Gamma-ray Space Telescope



- P(v';E,v, s): the probability density to reconstruct an incident direction (v') for a gamma ray with (E, v) in a given event selection, s
- For a given point (E) in the LAT phase space the PSF is a p.d.f.:
  - functional form to parameterize it (for MC PSF): two King Functions

$$K(x,\sigma,\gamma) = \frac{1}{2\pi\sigma^2} \left(1 - \frac{1}{\gamma}\right) \cdot \left[1 + \frac{1}{2\gamma} \cdot \frac{x^2}{\sigma^2}\right]^{-\gamma}$$

- The PSF varies by orders of magnitude across the LAT energy range
  - low energy dominated by multiple Coulomb scattering in the W conversion foils
  - high energy determined by the tracker strip pitch and lever arm

Gamma-ray pace Telescope





- Scaled angular deviation for each bin in log  $E_{MC}$  and  $\cos(\theta_{MC})$ .
  - histogram for the bin centered at 7.5 GeV, and 30° for Front events
- Divide the contents of each bin by the bin width.
- The resulting density histogram is then fit to extract the PSF parameters for that bin



# **Point Spread Function**



- For previous data releases, simulations underestimated the PSF at energies above few GeV
- Improvements to the MC description in Pass 8 have resolved this discrepancy.
- In the P8R2\_V6 IRFs the PSF model is derived entirely from MC simulations and contains no in-flight correction.

#### Why do front/back events have a different PSF?

R. Caputo | UMD/NASA/GSFC

#### Fermi Summer School 2018

# **Fisheye Effect**

- Bias in the reconstructed gamma-ray direction toward the LAT boresight
- WHY DOES THIS HAPPEN??!?
  - Particles scattering toward the LAT foresight are more likely to trigger the instrument and be reconstructed
  - Especially true at low energies and large angles
- Is this important?

Gamma-ray

- Usually not, long integration times mean that a source is typically seen at all angles
- However... it is potentially important for short observations
- How do you measure it?
  - Users must implement: FISHEYE\_CORRECTION
  - Extension of the PSF IRF contains tables binned in  $E_{true}$  and  $\theta$ . The correction is defined as a rotation with respect to the azimuthal axis away from the LAT boresight (for more details see FSSC)

Fermi Summer School 2018







Gamma-ray Space Telescope



- D(E'; E, v, s): is the probability density to measure an event energy E' for a gamma ray with (E, v) in the event selection s
- Parameterization strategy similar to the PSF
  - energy dispersion function combines two asymmetric exponential power functions with overall normalization of one
- Unlike the PSF, energy dispersion is ignored by default in the standard likelihood fitting
  - negligible in many situations (above 100 MeV)
  - can be taken into account in ScienceTools



- http://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Pass8\_edisp\_usage.html

# **Energy Resolution**



P8R2\_SOURCE\_V6 acc. weighted energy resolution 68% containment

sermi

Gamma-ray Space Telescope

P8R2\_SOURCE\_V6 acc. weighted energy resolution 68% containment



- Energy resolution vs. E
  - left: front/back event types, right: EDISP event types
- Low energy limits
  - energy deposited in tracker non-negligible
- High energy limits
  - shower leakage is dominant

# How does *E*<sub>res</sub> change as a function of angle?

R. Caputo | UMD/NASA/GSFC





# Validating and Calibrating the IRFs

#### What is this?







#### Credit: Eric Charles

#### R. Caputo | UMD/NASA/GSFC

Fermi Summer School 2018



## What is this: The Vela Pulsar!

- The effects of pointing!
  - LAT orbits every 95 minutes
  - Rocks N/S on alternate orbits
  - solar panels pointed at the Sun
- Plot of the path of the Vela Pulsar centered on the instrument FoV
  - 180 degrees and follows Vela's position from August 2008-2010.



 <u>http://apod.nasa.gov/apod/</u> <u>ap120504.html</u>







Dermi

Gamma-ray Space Telescope

- 30° ROI
- -~4.7 years
- phase gated
- $-\theta_z < 100^\circ$
- AGN (~20)
  - 4° ROI around AGN (PSF)
  - -4.8 years
  - standard DQ
  - $-\theta_z < 100^\circ$
- Limb
  - $-\theta_z > 107^\circ$
  - E>10 GeV
- All Sky
  - E>10 GeV

R. Caputo | UMD/NASA/GSFC





- Point sources at known locations (from other wavelengths)
  - most notably pulsars and AGN
  - Note: deviation from a point source (e.g. a halo) is the physical effect we're searching for
- Compared the measured 68% and 95% PSF containment radii for selected point sources with the PSF parameterization
  - on axis vs. off axis events
- By default you are using a PSF parameterization averaged over the LAT field of view
  - Always be careful when using short time observations





- Two aspects of the validation of the energy measurement
  - energy scale: the true value vs. the reconstructed value
  - energy resolution: event by event fluctuations around a true value
- Example: studying a gamma-ray line

Gamma-ray

- no known astrophysical source with GeV gamma-ray line
- Ground tests, beam tests, measurement of CRE geomagnetic cutoff
  - energy resolution at the ~10% level
  - energy scale at the +/-5 % level



Would you prefer a low energy or a high energy tail?

х





## **Systematic Uncertainties**





- Define a conservative systematic uncertainty
  - draw envelope that encompasses the largest residual observed in the  $A_{eff}/PSF/E_{disp}$  validation at each energy



- This envelope tests the impact of systematics on your analysis
- Note instrumental systematics are only one component of the total systematic uncertainty
  - astrophysical uncertainties in modeling the sky can be as large or larger than the instrumental systematics (unmodeled point sources, errors in the isotropic an galactic diffuse templates)

Gamma-ray Space Telescope



#### **Assessing the Systematic Uncertainty**





http://fermi.gsfc.nasa.gov/ssc/data/analysis/LAT\_caveats.html





## **Source Sensitivity**







# **Determining which event class to use**



| Analysis Type                              | Minimum<br>Energy<br>(emin) | Maximum<br>Energy<br>(emax) | Max Zenith<br>Angle<br>(zmax) | Event Class<br>(evclass) | IRF Name               |
|--------------------------------------------|-----------------------------|-----------------------------|-------------------------------|--------------------------|------------------------|
| Galactic Point<br>Source Analysis          | 100 (MeV)                   | 500000 (MeV)                | 90 (degrees)                  | 128                      | P8R2_SOURCE_V6         |
| Off-plane Point<br>Source Analysis         | 100 (MeV)                   | 500000 (MeV)                | 90 (degrees)                  | 128                      | P8R2_SOURCE_V6         |
| Burst and<br>Transient Analysis<br>(<200s) | 100 (MeV)                   | 500000 (MeV)                | 100 (degrees)                 | 16                       | P8R2_TRANSIENT020_V6   |
| Galactic Diffuse<br>Analysis               | 100 (MeV)                   | 500000 (MeV)                | 90 (degrees)                  | 128                      | P8R2_SOURCE_V6         |
| Extra-Galactic<br>Diffuse Analysis         | 100 (MeV)                   | 500000 (MeV)                | 90 (degrees)                  | 1024                     | P8R2_ULTRACLEANVETO_V6 |
| Impulsive Solar<br>Flare Analysis          | 100 (MeV)                   | 500000 (MeV)                | 100 (degrees)                 | 65536                    | P8R2_TRANSIENT015S_V6  |



### **Determining which event class to use**



| Analysis Type                      | Minimum<br>Energy<br>(emin) | Maximum<br>Energy<br>(emax) |                                        | Max Zenith<br>Angle<br>(zmax) | Event Class<br>(evclass)                          | IRF Name             |
|------------------------------------|-----------------------------|-----------------------------|----------------------------------------|-------------------------------|---------------------------------------------------|----------------------|
| Galactic Point<br>Source Analysis  | 100 (MeV)                   | 500000 (MeV)                |                                        | 90 (degrees)                  | 128                                               | P8R2_SOURCE_V6       |
| Off-plane Point<br>Source Analysis | 100 (MeV)                   | 500000 (MeV)                |                                        | 90 (degrees)                  | 128                                               | P8R2_SOURCE_V6       |
| Burst and<br>Transient Analysis    | 100 (MeV)                   | 500000 (MeV)                |                                        | 100 (degrees)                 | 16                                                | P8R2_TRANSIENT020_V6 |
| Analysis Type                      |                             |                             | ROI-Based Zenith Angle Cut<br>(roicut) |                               | Relational Filter Expression<br>(filter)          |                      |
| Galactic Point Source Analysis     |                             |                             | no                                     |                               | (DATA_QUAL>0)&&(LAT_CONFIG==1)                    |                      |
| Off-plane Point Source Analysis    |                             |                             | no                                     |                               | (DATA_QUAL>0)&&(LAT_CONFIG==1)                    |                      |
| Burst and Transient Analysis       |                             |                             | yes                                    |                               | (DATA_QUAL>0)&&(LAT_CONFIG==1)                    |                      |
| Galactic Diffuse Analysis          |                             |                             | no                                     |                               | (DATA_QUAL>0)&&(LAT_CONFIG==1)                    |                      |
| Extra-Galactic Diffuse Analysis    |                             |                             | no                                     |                               | (DATA_QUAL>0)&&(LAT_CONFIG==1)                    |                      |
| Burst and Transient Analysis       |                             |                             | yes                                    |                               | (DATA_QUAL>0  DATA_QUAL==-1)&&<br>(LAT_CONFIG==1) |                      |



Gamma-ray Space Telescope



- The LAT is designed to be used for a diverse range of scientific topics
  - flexibility for these diverse topics adds to the complexity
  - huge amount of instrumental phase space to calibrate
- The (awesome) LAT team has put a huge effort into understanding the instrument
  - validation studies verify that the IRFs provide a good description of the instrument
  - residuals usually ~2-3% and conservatively assess the systematic uncertainty on the A<sub>eff</sub> at 3-10% between 100 MeV and 500 GeV
- Propagating systematic uncertainties to high-level analyses can be tricky
  - analysis dependent... Do NOT skip this step...